To Appear in Al Communications 2013

Artificial Intelligence: From Programs to

Solvers

Hector Geffner

ICREA & Universitat Pompeu Fabra
Roc Boronat 138, 55.213

08018 Barcelona, Spain

E-mail: hector.geffner@upf.edu

Artificial Intelligence is a brain child of Alan Turing and his
universal programmable computer. During the 60’s and 70’s,
Al researchers used computers for exploring intuitions about
intelligence and for writing programs displaying intelligent
behavior. A significant change occurred however in the 80’s,
as many Al researchers moved from the early Al paradigm of
writing programs for ill-defined problems to writing solvers
for well-defined mathematical models like Constraint Satis-
faction Problems, Strips Planning, SAT, Bayesian Networks,
Partially Observable Markov Decision Processes, and Gen-
eral Game Playing. Solvers are programs that take a compact
description of a particular model instance and automatically
compute its solution. Unlike the early Al programs, solvers
are general as they must deal with any instance that fits the
model. Many ideas have been advanced to address this crisp
computational challenge from which a number of lessons can
be drawn. In this paper, I revisit the problem of generality
in Al, look at the way in which this "Models and Solvers’
agenda addresses the problem, and discuss the relevance of
this agenda to the grand Al goal of a computational account
of intelligence and human cognition.

Keywords: Models and solvers, Planning, General Intelli-
gence, Cognitive Science

1. Programming, Al, and AI Programming

Artificial Intelligence is a brain child of Alan Tur-
ing and his universal computer [58]. Turing was not
only a logician and the father of the modern computer,
but also the first programmer and the first to envi-
sion the possibilities that the programmable computer
opened for the study and replication of human intelli-
gence [11]. Programming played indeed a key role in
the 1956 meeting at Darmouth where Al got its name
[42]. An early collection of Al papers describing pro-
grams for playing chess and checkers, for proving the-
orems in logic and geometry, and for many other tasks,

Al Communications
ISSN 0921-7126, I0S Press. All rights reserved

appeared in the seminal book Computers and Thought.
The role of programming in these early days of Al is
made explicit in the preface of the original 1963 edi-
tion of the book, where the editors explain the criterion
that they followed in selecting the papers:

(We) have tried to focus on papers that report results.
In this collection, the papers ...describe actual working
computer programs ...Because of the limited space, we
chose to avoid the more speculative ... pieces [18].

The point is reemphasized in the preface of the more
recent 1995 edition:

A critical selection criterion (for inclusion in the collec-
tion) was that the paper had to describe . ..a running com-
puter program ... All else was talk, philosophy not science
... (L)ittle has come out of the talk [19].

Of course, not everyone in Al agreed with these views
and methods, in particular John McCarthy, who was
putting the basis for the logical approach to Al that
placed the emphasis on the semantics and expressivity
of representations rather than in their use [39,41]. Yet
such dissenting views were not common and cannot be
found in the volume.

It can actually be argued that several of the key Al
contributions in 60’s, 70’s, and early 80’s, had to do
with programming and the representation of knowl-
edge in programs. These contributions include Lisp
and Functional Programming, Prolog and Logic Pro-
gramming, Rule-based Programming, Interactive Pro-
gramming Environments and Lisp Machines, Frame,
Scripts, and Semantic Networks, and Expert Systems
Shells and Architectures [60,7,46]. To a large extent, it
was common to do Al then by picking up a task and
domain X, such as story understanding, humor, scien-
tific discovery, or circuit analysis, analyzing then how
the task is done by humans either by introspection or
by interviewing an expert, and capturing this reasoning
in a computer program [45,52]. The work was a theory
about X along with a program implementing the theory
which was usually tested over some examples.

1



2 H. Geffner / Al: From Programs to Solvers

2. The Problem of Generality

Many great ideas came out of this early work in Al
but there was a problem: theories expressed as pro-
grams could not be proved wrong, and in particular,
when a program failed on new examples like a new
joke or a new story, it was natural to put the blame on
the knowledge that the program was missing. This is
a version of the generality problem discussed at length
by John McCarthy [40]. This problem was dealt by
Al programmers in three different ways. Some nar-
rowed down the domain and scope of the programs so
that all the relevant knowledge could be made explicit.
This was the ’expert systems’ approach: programs de-
signed to display expert performance over one spe-
cific domain, leaving all other domains and any notion
of general intelligence, unaddressed [31]. Some took
the programs as illustrations or demonstrations of po-
tential capabilities which were not actually delivered.
The problem with this approach is the limited scien-
tific value of such demos [14]. Finally, some decided
to write down all the relevant knowledge. This was the
motivation underlying projects like Cyc [37], which
haven’t yet helped to deliver general intelligence.

The limitations of Al programs for exhibiting some
form of general intelligence, not tied to toy worlds or
narrow domains led to an impasse in the 80’s and to
several debates and controversies. One criticism then,
coming mainly from philosophers, was that Al, re-
named as Good Old Fashioned Al, had been conceived
as rules and rule application, while human intelligence
is something completely different [30]. A second criti-
cism, coming from engineers, was that knowledge rep-
resentation and inference were getting in the way, and
Al systems should instead follow nature and “just do
it”; placing emphasis on how percepts are transformed
into behavior, not on thought and deliberation [6]. A
third criticism came from the reborn field of neural net-
works and its emphasis on robust and tractable forms
of soft inference and learning, as opposed to rigid,
symbolic, and intractable forms of logical inference
[49]. In my view, all these criticisms contained more
than a grain of truth about the state of mainstream Al
research in the early 80’s. It’s clear that intelligence
cannot be rules “all the way down” with rules indi-
cating how and when the other rules should be used,
and also that intelligence must be linked to action and
behavior, and not just to abstract knowledge and in-
ference. Likewise, intelligent action involves processes
such as sensing and categorization that are inherently

partial and noisy and cannot be handled naturally in a
pure logical setting.

These debates and controversies have not died out,
and indeed, expressions such as “Good Old Fashioned
AI (GOFAID)” are still used sometimes not only to re-
fer to Al research in the 60’s and 70’s but to main-
stream Al as a whole. What I argue below, however, is
that many of these debates and controversies are sim-
ply dated, as mainstream Al has changed a great deal
in the last 30 years. Moreover, important lessons have
been learned that those who are still interested in un-
derstanding the human mind from a computational per-
spective, should not ignore.

3. Models and Solvers

If we look at the main conferences, journals, and
textbooks, current Al research appears as a long and
fragmented list of areas including Search and Plan-
ning, SAT and Constraints, Probabilistic Reasoning
and Planning, Knowledge Representation and Reason-
ing, Machine Learning, Natural Language Process-
ing, Multiagent Systems, and Robotics. The work on
many of these areas, however, is no longer about writ-
ing programs for ill-defined problems but about writ-
ing solvers for perfectly well-defined mathematical
models. These models include Constraint Satisfaction
Problems, Strips Planning, SAT, Bayesian Networks,
Partially Observable Markov Decision Processes, Gen-
eral Game Playing, and Answer Set Programming
among others [13,25,1,48,34,24,5]. Solvers are pro-
grams that take a convenient description of a particular
model instance (a planning problem, a CSP instance,
and so on) and automatically compute its solution. Un-
like the early Al programs, solvers are general as they
must deal with any problem that fits the model: any
Strips planning problem, any CSP, etc. This presents a
crisp computational challenge as all models are com-
putationally intractable, with all complete algorithms
running in time that is exponential in the number of
problem variables in the worst case. The computational
challenge is to push this exponential explosion as far as
possible. For this, general domain-independent solvers
must automatically find ways to exploit the structure
of the given problems, so that their performance over a
given domain instance can approach the performance
of a domain-specific solver. A still more basic require-
ment is that these solvers should not break down on a
problem merely due to its size as large problems are
not necessarily hard.

2



H. Geffner / Al: From Programs to Solvers 3

Work in CSPs, SAT, Planning, Bayesian Networks,
and to a less extent POMDPs has uncovered techniques
for scaling up by automatically exploiting the struc-
ture of problems. While these techniques apply to spe-
cific type of mathematical models, they are general
in the sense that they are not tailored to specific do-
mains. The computational value of these techniques is
assessed experimentally through benchmarks, and al-
most in all cases, by means of competitions. There are
currently periodic competitions for SAT, QBF, CSPs,
Planning, Bayesian Networks, MDPs, POMDPs, Gen-
eral Game Playing, Answer Set Programming, and so
on, with reports regularly appearing in the top Al jour-
nals. In these competitions, the solvers are tested over
known and unknown model instances, with solvers be-
ing ranked in terms of the number of problems solved,
the quality of solutions (when non-optimal solutions
are allowed), and speed. The various competitions have
helped to generate hundreds of problems that are used
as benchmarks, have set standards for the syntactical
encoding of problems, and have facilitated the empiri-
cal evaluation of algorithms which is crucial when the
challenge is scalability over models that are computa-
tionally intractable.

The focus on models and solvers that can scale up
has acted as a powerful filter on ideas and techniques,
setting up a clear distinction between the ideas that
look well from those that work well. Of course, the set
of benchmarks over which these ideas and techniques
are evaluated is always limited and biased, yet the fo-
cus on benchmarks provides a clear bottom line for
assessing progress, even if it also tends to discourage
sometimes excursions that do not address this bottom
line.

Some models are closely related to other models
(e.g., SAT and CSPs), others can be expressed as in-
stances of another model (e.g., Finite-horizon Plan-
ning as SAT, SAT as Planning, Probabilistic Planning
as Probabilistic Inference), yet all these models ad-
dress features that appear naturally in many problems
of interest. Some models are more narrow and limited,
like SAT, while others are almost AI-Complete such as
POMDPs, that feature many of the characteristics of
agents that act in the real world: goals and preferences,
stochastic actions, and partial and noisy feedback from
the environment.

It is important to notice that solvers are not archi-
tectures; i.e., ways to organize software or hardware in
settings that often have the expressive power of Tur-
ing machines. Solvers deal with models that are decid-
able in general and hence are less expressive than TMs,

yet within this restriction, they must solve the model
instances automatically. This is in contrast with mod-
ern computers or TM-equivalents like rule-based sys-
tems that can solve more difficult problems but need
to be programmed. In this sense, an instance that fails
to be solved by a general solver points to a limitation
of the mechanism embodied in the solver, while an in-
stance that fails to be solved by a knowledge-based
program normally points to a failure in the knowledge-
base. Solvers thus provide a different way for address-
ing the generality problem in Al

4. Lessons from Planning

There are important lessons that can be drawn
from the Models and Solvers agenda and the results
achieved so far in the quest for general scalable meth-
ods. Some of these lessons pertain to the old debates
surrounding Al and its relevance to the attempts to un-
derstand the human mind from a computational per-
spective. I focus first on lessons learned from Planning,
my research area, then on lessons learned from other
models and solvers.

Planning is the model-based approach to action se-
lection where actions for achieving goals are selected
using a model of the actions and sensors. [50,25,22].
There is a variety of planning models as actions can be
deterministic or not, feedback can be full, null, or par-
tial, and in addition, the initial situation may be fully
known or not. A planner is a solver that accepts arbi-
trary instances of a particular planning model in com-
pact form, and automatically produces a plan or con-
troller that drives the agent to the goal. The most basic
planning model is the one that underlies classical plan-
ning and assumes a fully known initial state, determin-
istic actions, and no feedback. A plan then is an action
sequence that transforms the initial state into a goal
state. From a computational point of view, the classical
planning problem can be mapped into a path-finding
problem over an implicit directed graph whose nodes
are the possible states and whose directed edges stand
for the state transitions made possible by the actions.
There are well-known algorithms for path-finding in
graphs such as Dijkstra’s, that run in time that is poly-
nomial in the size of the graph [9], yet for planning this
is not good enough as the number of nodes is expo-
nential in the number of problem variables. For find-
ing paths to the goal in such huge graphs, the search
must proceed with a sense of direction. In Al, this
is achieved by means of heuristic functions: functions

2



4 H. Geffner / Al: From Programs to Solvers

h(s) that provide a quick-and-dirty estimate of the dis-
tance or cost separating a state s from the goal [47,50].
A key development in modern planning research was
the realization that useful heuristics can be derived au-
tomatically from the representation of the problem in
a domain-general language [43,3,2]. It does not mat-
ter what the problem is about, a relaxed problem is ob-
tained directly and effectively from the problem repre-
sentation, whose solution from a state s, computed in
low polynomial time, yields an informed estimate A(s)
of the cost-to-go from s to the goal.

The most common and useful domain-independent
relaxation in planning is the delete-relaxation that
maps a planning problem P(s), with initial state s,
into a planning problem P (s) that is exactly like P(s)
but where the actions do not ‘delete’ from the state
the atoms that they make false. That is, the delete-
relaxation is a domain-independent transformation that
takes a planning problem P(s) and produces another
problem P (s) where atoms are added exactly like in
P(s) but are never deleted. The relaxation implies, for
example, that objects and agents can be in “multiple
places” at the same time, as when an object or an agent
moves into a new place, the atom encoding the old
location is not deleted. Relaxations, however, are not
aimed at providing accurate models of the world; quite
the opposite, simplified and even meaningless models
of the world that while not accurate yield useful heuris-
tics [54,44,47]. The heuristic h(s) is obtained as an ap-
proximation of the optimal cost of the delete-relaxation
P (s) that is derived from the cost of a plan that solves
P*(s) not necessarily optimally [32]. The reason that
an approximation is needed is because finding an opti-
mal plan for a delete-free planning problem like P (s)
is also NP-hard. On the other hand, finding just one
plan for the relaxation whether optimal or not, can be
done quickly and efficiently. The property that allows
for this is decomposability: a problem without deletes
is decomposable in the sense that a plan for a joint goal
G1 and G, can always be obtained from a plan for Gy
and a plan for G,.

Interestingly, the heuristics developed in domain-
independent planning for achieving both generality
and scalability, tie up quite closely with current themes
in Cognitive Science concerning the role of emotions
and gut feelings in rational behavior, and to the lim-
itations of early Al research that missed the crucial
role played by unconscious inference in everyday cog-
nition [59,29,17]. Domain-independent heuristics are
fast (low-polynomial time) and effective, as the ‘fast
and frugal’ heuristics advocated by Gigerenzer and

others [27,26], and yet, they are general too: they ap-
ply indeed to all the problems that fit the model and
problems that can be cast in that form. In addition, the
derivation of these heuristics sheds light on why ap-
praisals may be opaque from a cognitive point of view,
and thus not conscious. This is because the heuristic
values are obtained from a relaxed model where the
meaning of the symbols is different than the meaning
of the symbols in the ‘true’ model. Last, the heuris-
tics provide the agent with a sense of direction or ‘gut
feeling’ that guide the action selection in the presence
of many alternatives, while avoiding an infinite regress
in the decision process. Indeed, emotions long held to
interfere with the decision process and rationality, are
now widely perceived as a requisite in contexts where
itis not possible to consider all alternatives, where they
appear to act as the ‘invisible hand’ that guides us in
these mental labyrinths [36,16]. The ‘rationality of the
emotions’ has been defended on theoretical grounds
by philosophers [12,15], and on empirical grounds by
neuroscientists that have studied the impairments in the
decision process that result from lesions in the frontal
lobes [10]. The link between emotions and automati-
cally derived evaluation functions in planning point to
their possible computational role as well. The work in
planning and more generally the work in solvers, thus
show that not only the twin goals of generality and
scalability constitute a crisp challenge that can be ad-
dressed head on through suitable models and methods,
but that the results can be a critical source of insight
for understanding general intelligence in both humans
and machines.

5. Other Lessons

An old discussion surrounding Al is about symbolic
vs. subsymbolic representation and inference. Clearly,
rule-based systems were symbolic, and neural net-
works were subsymbolic. Yet, what about more recent
models like Bayesian Networks or MDPs that have
been at the center of Al research for more than two
decades? Are they symbolic or subsymbolic? Is the
distinction actually relevant at all? Indeed, models such
as Bayesian Networks or MDPs can be used “sym-
bolically” over variables and states associated with
meaningful symbols, or subsymbolically, with vari-
ables and states not correlated with meaningful sym-
bols at all. The latter case is common when the models
are learned, as when Hidden Markov Models, a spe-
cial type of Bayesian Network, are learned from data

2



H. Geffner / Al: From Programs to Solvers 5

in applications such as speech recognition, or when re-
inforcement learning algorithms are used to learn to
act by trial-and-error in MDPs with unknown param-
eters [57]. Indeed, Bayesian Networks have been used
in Development Psychology for understanding how ba-
bies acquire and use causal relations much before that
they learn to speak [28], and Reinforcement Learning
algorithms have been used in Neuroscience for inter-
preting the activity of dopamine cells in the brain [53].

While the distinction between symbolic and sub-
symbolic processing does not appear to be as crucial
now as in the past, there are other distinctions that are
important now that were not regarded as important in
the past. Indeed, there is a crucial difference between
programs and architectures, on the one hand, and mod-
els like Bayesian Networks or MDPs on the other. The
former do not have a clearly defined scope and must
be programmed by hand; the latter represent an infi-
nite but perfectly well defined class of problems which
must be solved automatically.

What about other distinctions such as probabilis-
tic vs. logic inference? Logic and probabilistic infer-
ence have been traditionally thought as very differ-
ent forms of reasoning requiring completely different
types of algorithms. This, however, is no longer as
clear-cut. Some of the best probabilistic reasoning en-
gines are currently based on ideas coming from logic,
while some of the best logical inference engines are
based on ideas coming from probabilistic reasoning.
The two areas are no longer disjoint and there is a very
active exchange of ideas and techniques among the
two different fields, with interesting consequences for
understanding the mechanisms required for a domain-
general intelligence.

SAT is the problem of determining whether there is
a truth assignment that satisfies a propositional logical
formula in Conjunctive Normal Form (CNF) [1]. The
problem is NP-Complete, which in practice means that
the worst-case behavior of complete SAT algorithms
is exponential in the number of variables. Still cur-
rent SAT solvers manage to solve problems with thou-
sands of variables and clauses, and are used widely.
The way that SAT solvers achieve this is by interleav-
ing an incremental and complete search for solutions
with two types of efficient and cost-effective inference:
Unit Resolution, where the resolution inference rule is
applied only when one of the parent clauses is a unit
clause, and Conflict-based learning, by which clauses
are learned during the search by analyzing the rea-
sons that caused a partial assignment to fail. It is im-
portant to emphasize that many other ideas are logi-

cally possible but do not scale up as well; ideas like
bypassing inference entirely by generating and test-
ing each possible assignment one by one, or bypass-
ing search entirely by applying full resolution without
the unit restriction. More interestingly, the techniques
found to be successful in SAT have been applied to
SAT variations, like Weighted MAX-SAT, where the
task is to find the assignment that minimizes the addi-
tive cost of the clauses violated by the assignment, and
Weighted Model Counting, where the task is to add up
the weights of the satisfying assignments, each such
weight being the product of the weights of the true lit-
erals in the assignment. Moreover, these SAT variants
are intimately related to probabilistic reasoning tasks;
in particular, the computation of beliefs in a Bayesian
Networks can be easily reduced to a weighted model
counting problem, while the computation of the most
probable explanation in a Bayesian Network can be
easily reduced to a Weighted Max-SAT problem. In-
deed, some of the best exact BN solvers build on
this formulation [51,8]. More generally, the worst-case
complexity of a number of operations over SAT, CSP,
and Bayesian Network tasks, can be all expressed in
terms of the same treewidth parameter that measures
how tree-like is the graph induced by the factors of
the problem: clauses in SAT, constraints in the CSP,
and each variable with its parent set in Bayesian Net-
works [20,48,13]. Also, belief propagation algorithms
derived for tree-like Bayesian Networks have been
used not only as approximation algorithms for general
Bayesian Networks [61], but also as part of exact algo-
rithms for SAT and CSPs [4].

6. Conclusions

The relevance of the early work in Al to cogni-
tive science was based on infuition: programs pro-
vided a way for specifying intuitions precisely and for
trying them out. The more recent work on domain-
independent solvers is more technical and experimen-
tal, and is focused not on reproducing intuitions but
on scalability. This may give the impression that re-
cent work is less relevant to the original Al goals of
understanding human and general intelligence from a
computational perspective. This impression, however,
may prove wrong for two reasons. First, intuition is not
what it used to be, and it is now regarded as the tip of
an iceberg whose bulk is made of massive amounts of
shallow, fast, but unconscious inference mechanisms
that cannot be rendered explicit [59,29,26,35]. Second,

2



6 H. Geffner / Al: From Programs to Solvers

whatever these mechanisms are, they appear to work
pretty well and to scale up. This is no small feat, given
that most methods, whether intuitive or not, do not. By
focusing then on the study of meaningful models and
the computational methods for dealing with them ef-
fectively, Al may prove its relevance to human cogni-
tion in ways that may go well beyond the rules, cog-
nitive architectures, and knowledge structures of the
80’s, while providing also the basis for a general form
of artificial intelligence.

There are still a number of challenges. I focus briefly
on open problems related to planning. One challenge
there is planning in the presence of other agents that
plan, often called multiagent planning. People do this
naturally all the time: walking on the street, driving,
etc. The first question is how plans should be then de-
fined. This is a subtle problem and many proposals
have been put forward, often building on equilibria no-
tions from game theory, yet no models, algorithms, or
implementations of domain-independent planners able
to plan meaningfully and efficiently are available in
such a setting. This is not surprising though given the
known limitations of game theory as a descriptive the-
ory of human behavior. It is possible indeed that mul-
tiagent domain-independent planners based on a nar-
row view of human rationality just cannot get off the
ground, trapped in a prisioner’s dilemma type of paral-
ysis. Eventually, a working theory of multiagent plan-
ning could shed light on the computation, nature, and
role of social emotions in multiagent settings, very
much as single agent planning appears to shed light
on the computation, nature, and role of goal appraisals
and heuristics in single-agent settings. A second open
problem is learning the planning models themselves by
interacting with the environment. There has been con-
siderable progress in learning model parameters and
rewards as in model-based reinforcement learning, yet
the harder problem is learning the states themselves.
Last, solutions are often learned or inferred that work
not just for one problem but for many problems, in-
cluding all possible instances of a particular domain.
For instance, finding a plan for an instance of blocks
world is different than inferring a general strategy for
solving all block world instances. This more general
problem has been called generalized planning [33,55].
The solutions to such problems can often be encoded
as memoryless policies that map problem features into
actions. The question is how to get such features and
policies in the model-based approach, and how to get
them effectively, in particular in domains that admit
compact solutions over the right features. An early ap-

proach that does this in the blocks world constructs
a large pool of compound features from the primitive
predicates in the domain using a description logic, and
then looks for compact policies represented as decision
lists in the resulting language using Rivest’s learning
algorithm over data obtained from the solution of small
instances [38]. A different approach, popular in Game
Al uses a given feature space and looks for controllers
represented by neural networks using a form of evolu-
tionary search [56].

Acknowledgements

I thank Luc De Raedt and Maria Fox for the invita-
tion to talk at the Turing Session, ECAI 2012, and for
the chance to put these ideas in writing for AI Com-
munications. I delivered previous versions of this talk
at the University of Edinburgh in 2007 and at UMass
in 2010 as part of their Distinguished Lecture Series. I
thank Michael Fourman, Johanna Moore, Andy Barto,
and Shlomo Zilberstein for the invitations and their
hospitality. I've touched on some of these issues in
[21,23]. My work is partially supported by grant EC-
7PM-SpaceBook.

References

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability: Volume 185 Frontiers in Artificial
Intelligence and Applications. 10S Press, 2009.

[2] B.Bonetand H. Geftner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5-33, 2001.

[3] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action
selection mechanism for planning. In Proc. AAAI-97, pages
714-719, 1997.

[4] A. Braunstein, M. Mezard, and R. Zecchina. Survey propaga-
tion: An algorithm for satisfiability. Random Structures and
Algorithms, 27(2):201-226, 2005.

[5] G. Brewka, T. Eiter, and M. Truszczynski. — Answer set

programming at a glance. Communications of the ACM,

54(12):92-103, 2011.

R. Brooks. Intelligence without representation. Artificial Intel-

ligence, Volume 47(1-2):139-159, 1991.

E. Charniak, C. Riesbeck, and D. McDermott. Artificial intel-

ligence programming. L. Erlbaum Associates, 1980.

[6

=

[7

—

[8] M. Chavira and A. Darwiche. On probabilistic inference

by weighted model counting. Artificial Intelligence, 172(6—

7):772-799, 2007.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction

to Algorithms. The MIT Press, 2009.

[10] A. Damasio. Descartes’ Error: Emotion, Reason, and the Hu-
man Brain. Quill, 1995.

[9

—



H. Geffner / Al: From Programs to Solvers 7

[11] M. Davis. The universal computer: The road from Leibniz to
Turing. W. W. Norton & Company, 2000.

[12] R. De Sousa. The rationality of emotion. MIT Press, 1990.

[13] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[14] H. Dreyfus. What computers can’t do: A critique of artificial
reason. Harper & Row, New York, 1972.

[15] J. Elster. Alchemies of the Mind: Rationality and the Emotions.
Cambridge Univ. Press, 1999.

[16] D. Evans. The search hypothesis of emotion. British J. Phil.
Science, 53:497-509, 2002.

[17] J. Evans. Dual-processing accounts of reasoning, judgment,
and social cognition. Annual Review of Pschycology, 59:255—
258, 2008.

[18] E.A. Feigenbaum and J. Feldman. Computers and thought.
McGraw-Hill, 1963.

[19] E.A. Feigenbaum and J. Feldman. Computers and thought.
MIT Press, 1995.

[20] E. Freuder. A sufficient condition for backtrack-free search.
Journal of the ACM, 29(1):24-32, 1982.

[21] H. Geffner. Heuristics, planning, cognition. In R. Dechter,
H. Geffner, and J.Y. Halpern, editors, Heuristics, Probability
and Causality. A Tribute to Judea Pearl. College Publications,
2010.

[22] H. Geftner. The model-based approach to autonomous behav-
ior: A personal view. In Proc. AAAI, 2010.

[23] H. Geffner. Computational models of planning. Wiley Interdis-
ciplinary Reviews: Cognitive Science, 2, 2013.

[24] M. Genesereth, N. Love, and B. Pell. General game play-
ing: Overview of the aaai competition. Al magazine, 26(2):62,
2005.

[25] M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
theory and practice. Morgan Kaufmann, 2004.

[26] G. Gigerenzer. Gut feelings: The intelligence of the uncon-
scious. Viking Books, 2007.

[27] G. Gigerenzer and P. Todd. Simple Heuristics that Make Us
Smart. Oxford, 1999.

[28] A. Gopnik, C. Glymour, D. Sobel, L. Schulz, T. Kushnir, and
D. Danks. A theory of causal learning in children: Causal maps
and Bayes nets. Psychological Review, 111(1):3-31, 2004.

[29] R. Hassin and J. Uleman J.Bargh. The new unconscious. Ox-
ford University Press, USA, 2005.

[30] J. Haugeland. Artificial intelligence: The very idea. MIT press,
1993.

[31] E. Hayes-Roth, D. Waterman, and D. Lenat. Building expert
systems. Addison-Wesley, Reading, MA, 1984.

[32] J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intel-
ligence Research, 14:253-302, 2001.

[33] Y. Hu and G. De Giacomo. Generalized planning: Synthesizing
plans that work for multiple environments. In Proc. IJCAI,
2011.

[34] L. Kaelbling, M. Littman, and T. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial Intel-
ligence, 101(1-2):99-134, 1998.

[35] D. Kahneman. Thinking, fast and slow. Farrar, Straus and
Giroux, 2011.

[36] T. Ketelaar and P. M. Todd. Framing our thoughts: Evolution-
ary psychology’s answer to the computational mind’s dilemma.
In H.R. Holcomb III, editor, Conceptual Challenges in Evolu-
tionary Psychology. Kluwer, 2001.

[37] D.Lenat, R. Guha, K. Pittman, D. Pratt, and M. Shepherd. Cyc:
toward programs with common sense. Communications of the
ACM, 33(8):30-49, 1990.

[38] M. Martin and H. Geffner. Learning generalized policies in
planning using concept languages. In Proc. 7th Int. Conf. on
Knowledge Representation and Reasoning, 2000.

[39] J. McCarthy. Programs with common sense. In Proc.
Symp. on Mechanization of Thought Processes, National
Physical Laboratory, Teddington, England, 1958. At
http://en.wikipedia.org/wiki/Advice_taker.

[40] J. McCarthy. Generality in artificial intelligence. Communica-
tions of the ACM, 30(12):1030-1035, 1987.

[41] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. Machine Intelli-
gence, Vol. 4, 1969.

[42] J. McCarthy, M.L. Minsky, N. Rochester, and C.E. Shannon. A
proposal for the Dartmouth Summer Research Project on Ar-
tificial Intelligence, August 31, 1955. Al Magazine, 27(4):12,
2006.

[43] D. McDermott. A heuristic estimator for means-ends analysis
in planning. In Proc. AIPS-96, pages 142—149, 1996.

[44] M. Minsky. Steps toward artificial intelligence. Proceedings of
the IRE, 49(1):8-30, 1961.

[45] M. Minsky. Semantic information processing. The MIT Press,
1969.

[46] P. Norvig. Paradigms of artificial intelligence programming:
case studies in Common LISP. Morgan Kaufmann, 1992.

[47] J. Pearl. Heuristics. Addison Wesley, 1983.

[48] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann, 1988.

[49] D. Rumelhart and J. McClelland, editors. Parallel distributed
processing: explorations in the microstructure of cognition.
Vol. 1. MIT Press, 1986.

[50] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2009. 3rd Edition.

[51] T. Sang, P. Beame, and H. Kautz. Performing bayesian infer-
ence by weighted model counting. In Proc. AAAI, pages 475—
482, 2005.

[52] R. Schank and C. Riesbeck. Inside computer understanding:
Five programs plus miniatures. L. Erlbaum Associates, 1981.

[53] W. Schultz, P. Dayan, and P.R. Montague. A neural substrate of
prediction and reward. Science, 275(5306):1593-1599, 1997.

[54] H. Simon. A behavioral model of rational choice. The quarterly
Journal of economics, 69(1):99-118, 1955.

[55] S. Srivastava, N. Immerman, and S. Zilberstein. A new repre-
sentation and associated algorithms for generalized planning.
Artificial Intelligence, 175(2):615-647, 2011.

[56] K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neu-
roevolution in the nero video game. Evolutionary Computa-
tion, IEEE Transactions on, 9(6):653-668, 2005.

[57] R. Sutton and A. Barto. Introduction to Reinforcement Learn-
ing. MIT Press, 1998.



8 H. Geffner / Al: From Programs to Solvers

[58] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. In Proc. of the London Mathematical
Society, volume 42, pages 230-265, 1936.

[59] T. Wilson. Strangers to ourselves. Belknap Press, 2002.

[60] P. Winston and R. H. Brown, editors. Artificial Intelligence: An
MIT Perspective, Vols 1 & 2. MIT Press, 1982.

[61] J. Yedidia, W. Freeman, and Y. Weiss. Understanding be-
lief propagation and its generalizations. In G. Lakemeyer and
B. Nebel, editors, Exploring artificial intelligence in the new
millennium, pages 236-239. Morgan Kaufmann, 2003.



