The Heapsort Algorithm

Sebastian Streich,
Enric Meinhardt
Overview

1. Introduction
2. What is a Heap?
3. Subroutines for Heaps
4. The Heapsort Function
5. Bottom-up Heapsort
6. Priority Queues
Introduction

Important properties of sorting algorithms:

<table>
<thead>
<tr>
<th></th>
<th>Processing time</th>
<th>Memory consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort</td>
<td>$O(n \log_2(n))$</td>
<td>$O(n)$ extra elements</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>$O(n^2)$</td>
<td>In place</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$O(n \log_2(n))$</td>
<td>In place</td>
</tr>
</tbody>
</table>
What is a Heap?

Array object:

| 1. | 2. | 3. | 4. | 5. | 6. |

Binary tree:

Height \(\lceil \log_2(n) \rceil \)
What is a Heap?

Calculating the Indices:

- Parent(i) = ⌊i/2⌋
- left_child(i) = 2·i
- right_child(i) = 2·i+1
What is a Heap?

Heap property:

$A[\text{Parent}(i)] \geq A[i]$

→ maximum element in the root (max-heap)

or

$A[\text{Parent}(i)] \leq A[i]$

→ minimum element in the root (min-heap)
Subroutines for Heaps

Heapify(A,i)

Purpose: make the subtree of A starting in node i fulfil the heap property

Pre-condition: subtrees starting in left_child(i) and right_child(i) must be heaps already
Subroutines for Heaps

Heapify(A,i)

l := largest node of i and its children
if (i ≠ l)
 exchange A[i] with A[l]
Heapify(A, l)

A real implementation should not be recursive!
(overhead when passing the function’s arguments)
Subroutines for Heaps

Heapify(A, i)

Computational cost: \(T(n) \leq T(2n/3) + \Theta(1) \)

\[\rightarrow T(n) = O(\log_2(n)) \]

or \(T(n) = O(h) \)

with \(h \) being the height of node \(i \)
Subroutines for Heaps

Build_heap(A)

Purpose: build a heap out of array A

Pre-condition: any array A

Idea: not many elements need to be exchanged
Subroutines for Heaps

```
Build_heap(A)

for i = n/2 downto 1
    Heapify(A, i)
```

- leaves of the tree are elements with $i \geq n/2$
- leaves are already heapified subtrees
- Build_heap runs in time $O(n)$
Initial random array

n/2 calls of Heapify

Array with the heap property

Figure taken from R. Sedgewick, Algorithms in C, Third edition, 1998 Addison-Wesley
The Heapsort Function

Heapsort(A)

Purpose: sort array A (in place)

Pre-condition: any array A

Idea: make A a heap, then take out the root; repeat until the array is sorted
The Heapsort Function

1.
 \begin{align*}
 &9 \\
 &\downarrow \\
 &8 \quad 3 \\
 &\downarrow \quad \downarrow \\
 &4 \quad 6 \quad 2
 \end{align*}

2.
 \begin{align*}
 &2 \\
 &\downarrow \\
 &8 \quad 3 \\
 &\downarrow \quad \downarrow \\
 &4 \quad 6 \quad 9
 \end{align*}

3. (Heapify)
 \begin{align*}
 &8 \\
 &\downarrow \\
 &2 \quad 3 \\
 &\downarrow \quad \downarrow \\
 &4 \quad 6 \quad 9
 \end{align*}

4. (Heapify)
 \begin{align*}
 &8 \\
 &\downarrow \\
 &6 \quad 3 \\
 &\downarrow \quad \downarrow \\
 &4 \quad 2 \quad 9
 \end{align*}

...
The Heapsort Function

Heapsort(A)

Build_heap(A)
for i = n downto 2
 exchange A[1] with A[i] \(\rightarrow \) root is swapped with last element
A.size-- \(\rightarrow \) former root is outside A
Heapify(A, 1)

Heapsort runs in time O(n \(\log_2(n) \))
The Heapsort Function

The Heapsort Function
The Heapsort Function
The Heapsort Function
The Heapsort Function
Bottom-up Heapsort

Variant of heapsort with better performance (average)

- last element of the heap is supposed to be very small
- pass it all the way down after swapping with the root
- then move it up to its proper position
Bottom-up Heapsort

Instead of do

Figures taken from http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/heap/heap.htm
Priority Queues

A priority queue is an ADT with the following operations:

- **Insert** a new element into the queue
- **Find** the element with the largest key
- **Delete** the element with the largest key

Other common operations:

- Increase the key of an element
Priority Queues

Heaps provide an **efficient implementation** of priority queues:

- get the maximum \rightarrow take the root
- delete the maximum \rightarrow move the last element to the root and heapify
- insert a new element \rightarrow put it at the end and raise it until it's in place
Link to Build_heap applet:

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/heap/heapen.htm