
A Learning Approach to Interactive Browsing of
Surveillance Content

Anders Jonsson
Department of Technology
Universitat Pompeu Fabra

Roc Boronat 138
08018 Barcelona, Spain

anders.jonsson@upf.edu

Christophe Parisot
ACIC

Boulevard Initialis, 28
7000 Mons, Belgium
parisot@acic.eu

Christophe De Vleeschouwer
TELE - School of Engineering

Université Catholique de Louvain
1348 Louvain-la-Neuve, Belgium

devlees@tele.ucl.ac.be

ABSTRACT
In this paper, we present a novel application for interac-
tive browsing of (recorded) surveillance content. The ap-
plication is based on user feedback and enables an opera-
tor to switch between camera views that are likely to con-
tain the same activity. Our system relies on o�-the-shelf
background-subtraction activity detection mechanisms. We
use two techniques from machine learning to automatically
learn the topology of surveillance camera networks. The
�rst technique identi�es connections between camera views
for which objects are temporarily out of view, while the sec-
ond technique identi�es overlap between views. Testing on
an actual surveillance camera network suggests that the ap-
proach is both accurate and robust, despite the simplicity of
the involved computer vision methods.

1. INTRODUCTION
The goal of video surveillance is to monitor an area for un-

usual or suspicious activities. Usually this is accomplished
using a network of static or moving cameras that continu-
ously record video streams of the area of interest. Typically,
a human operator reviews the recorded video streams at
regular intervals to identify suspicious activities. To accom-
plish this, the operator has to go through each video stream
individually. Although there exist automatic methods that
assist operators during the browsing of a video stream, it
can still be a very time-consuming process.

We interviewed users of surveillance camera networks to
identify potential improvements over the state-of-the-art. It
turns out that such users are not interested in fully auto-
matic systems for reviewing recorded content. Instead, they
want a human operator to remain in control of the browsing
task. However, the process of reviewing each video stream
individually appears ine�cient. Usually a detected activity
is not isolated to one camera view, but takes place in sev-
eral camera views over an extended period of time. A more
e�cient approach is to allow operators to switch between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
ICDSC 2010August 31 – September 4, 2010, Atlanta, GA, USA
Copyright 20XX ACM 978-1-4503-0317-0/10/08 ...$10.00.

camera views that are likely to contain the same activity as
the view currently being displayed. Incidentally, this kind
of service is also helpful in an online context to facilitate
on-the-y tracking of activities of interest across a camera
network.

With this in mind, we developed an application for in-
teractive browsing of (recorded) surveillance content. We
wanted our application to satisfy the following criteria:

� Use existing commercial o�-the-shelf tracking
algorithms to identify moving objects.

� Assume no prior knowledge of the camera network
topology, but instead use machine learning techniques
to learn the topology from recorded data.

� Use probabilistic reasoning to estimate the likelihood
of an object being viewed in one camera to appear in
neighboring camera views.

� Design an interface that allows an operator to browse
recorded content, and facilitate such browsing by sug-
gesting alternative views where activities are likely to
take place.

The resulting interface, described in Section 5, allows an op-
erator to select a main camera view. Suggested alternative
views are displayed next to the main view. The operator
may switch back and forth between related views, causing
the main view to change. A timeline enables easy access to
any segment of the video stream, and displays time points
for which activities were automatically detected to aid the
operator in browsing the content.

To learn the camera network topology, we use techniques
from machine learning. For camera views such that ob-
jects are temporarily out of view, we establish temporal
correlations between activities of objects transiting between
views using clustering and cross-correlation [8, 9]. For views
such that objects appear simultaneously, we use a technique
based on exclusion count [14] to detect overlap. Neither
approach relies on established correspondences between tra-
jectories, and are thus completely unsupervised. We show
how to adapt both techniques to the surveillance scenario, in
which the amount of detected activity is usually very small.

Although static relationships between camera views could
be identi�ed o�ine by a human, our learning approach of-
fers several advantages. First, relationships between camera
views may not be immediately apparent from an overview
of the camera network. In addition, if cameras are removed

Figure 1: Overview of the surveillance camera net-
work.

from or added to the network, an automatic approach can
dynamically adapt to the new camera con�guration without
need for reprogramming. This is especially relevant when
handling large networks. Second, if we can estimate the
probability of an object appearing in a di�erent camera view,
we can rank views according to this probability and suggest
the alternative views that are most likely. The same infor-
mation can be used to perform automatic switching between
views to track objects in real-time, although this feature has
not yet been implemented. We show how the information
obtained through learning makes it possible to perform such
predictions about the future location of objects.

We tested the learning approach on an actual surveil-
lance camera network, shown in Figure 1. The network
consists of eight static cameras, seven outdoors and one
indoors (camera 8). Some of the cameras are color sensi-
tive, while others are black-and-white. We believe that the
network is representative of a typical surveillance camera
network, in terms of di�erent camera speci�cations, place-
ments, and lighting conditions. For testing, we recorded 28
hours of video streams for each of the eight cameras. We
applied the learning techniques described above to establish
relationships between camera views. The results of learning
indicate that the approach is both accurate and robust.

The rest of the paper is organized as follows. Section 2 de-
scribes the algorithm that detects and tracks moving objects
in the recorded video streams. Section 3 introduces our ap-
proach for identifying related camera views when objects are
temporarily out of view. Section 4 presents our approach for
detecting overlap between camera views. Section 5 describes
our surveillance application interface. Section 6 relates our

work to existing research, and Section 7 concludes with a
discussion about future work.

2. TRACKING
To learn relationships between camera views, we automat-

ically track moving objects in the recorded video streams.
In this work, we decided to employ tracking algorithms used
in commercial applications. Although not as sophisticated
as state-of-the-art research, these algorithms have two ad-
vantages: they are fast, which is important if objects are
to be tracked real-time, and they are readily available for
a variety of platforms. Since our application is user-driven,
tracking is not a critical component as long as the camera
topology and associated probabilities are learned accurately.
The machine learning techniques presented in the following
sections are surprisingly robust even when tracking is not
perfect.

The surveillance scenario we consider presents several dif-
�culties. Illumination conditions may vary signi�cantly for
outdoor cameras as the weather changes. The background
may be composed of several modes rather than a single one,
for example trees moving in the wind. Image quality may be
poor at night. Finally, color information is not always avail-
able if cameras are black-and-white or switch to grayscale
mode under poor lighting conditions. Initial experiments
showed that reliably establishing correspondences between
objects in di�erent camera views was going to be hard.

Due to these di�culties, we instructed the algorithm to
maintain multi-modal statistical background information and
use luminance processing only, i.e., ignore color information.
This gives it the ability to adapt quickly to global illumina-
tion changes. The algorithm we employed consists of two
components: video segmentation and tracking.

The �rst component, video segmentation, detects the im-
age areas in which moving objects are located. The com-
ponent maintains and updates a dynamic background esti-
mation in the form of a mixture of Gaussians for each pixel
luminance [12]. This approach makes it possible to represent
regularly oscillating or blinking objects as part of the back-
ground estimation. In each new frame, image areas that
di�er from the background are tagged as moving objects.
We use rectangular bounding boxes to represent objects in
each frame.

The second component, tracking, constructs coherent tra-
jectories from the video segmentation. Tracks are simply
sequences of bounding boxes across image frames. For each
detected object, we compare its position with the last po-
sition of all active tracks. In case the object �ts one track,
that track is updated with the object description. In case no
track �ts the object position, a new track is initiated. We
apply a �ltering process to remove tracks whose duration is
too short or whose behaviour is not smooth. In summary,
the algorithm is thus quite simple; we show however that
such a low-cost and o�-the-shelf solution provides su�cient
information to infer the correct network topology.

3. RELATED CAMERA VIEWS
We use the object tracks from the previous section to au-

tomatically infer connections between camera views. Our
approach is based on the work by Makris et al. [8, 9], which
we have adapted to make more robust when the activity
in the recorded video streams is low. The �rst step is to

Figure 2: Entry/exit zones for camera 1, Cmax = 6 .

cluster the start and end points of tracks to obtain a set
of entry/exit zones for di�erent camera views. Then cross-
correlation is performed to determine connections between
entry/exit zones.

3.1 Clustering of Entry/Exit Zones
To form entry/exit zones we cluster the start and end

point of tracks using the G-means algorithm [3]. Each re-
sulting cluster becomes an entry/exit zone. The G-means
algorithm extends the K-means algorithm by automatically
learning the parameter K representing the number of clus-
ters. The only parameters required are � , the statistical
signi�cance level, and Cmax , the maximum number of de-
sired clusters. To test the robustness of our approach, we
varied Cmax from 4 to 8.

Figure 2 shows the entry/exit zones for camera 1 obtained
by clustering with Cmax = 6. Each X in the �gure marks
a start or end point of a trajectory, and the color coding
shows which entry/exit zone each point belongs to. For each
cluster, the principal components are displayed as ellipses,
centered around larger white X's. It is apparent from the
�gure that the clusters are not perfect: for example, several
of the clusters span over two di�erent streets. Moreover,
the start and end points of trajectories are distributed fairly
evenly across the camera view, instead of being concentrated
around the edges of the image as one might expect.

For the above reasons, it is di�cult to learn connections
between entry/exit zones, since the zones are not clearly de-
lineated and since positive examples of objects moving be-
tween camera views may become obfuscated by other trajec-
tories starting and ending in the same zone. However, since
our goal was to develop a fully automated technique for de-
tecting connections between camera views, we preferred not
to perform any tuning of the clusters by hand. Further-
more, as we shall see, it is still possible to learn accurate
connections between entry/exit zones.

3.2 Cross-Correlation
The next step in learning connections between pairs of

camera views is to perform cross-correlation between each
pair (Z1 ; Z2) of entry/exit zones. For each trajectory T1

that ends in Z1 and each trajectory T2 that begins in Z2 ,

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300

(a) (b)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

(c) (d)

Figure 3: Mixture of Gaussian �t for a pair of con-
nected entry/exit zones, m 2 [3: :6].

the cross-correlation is s(T2) � e(T1), where s(T) and e(T)
is the start and end time of trajectory T . By symmetry, we
also compute the cross-correlation s(T1) � e(T2) of pairs of
trajectories T1 ; T2 that start in Z1 and end in Z2 .

We are left with a sequence of data points representing
the cross-correlation. To simplify, we restrict our attention
to data points in the interval (0 ; 300] (time given in seconds).
In other words, we want to detect connections between en-
try/exit zones for which objects are temporarily out of view,
i.e., the time it takes to move between two zones is a pos-
itive number. We assume that in the type of surveillance
camera network we consider, this time should rarely exceed
5 minutes (if necessary, the interval could easily be extended
as needed).

To �nd out whether two entry/exit zones are connected,
we �t a mixture of m Gaussians to the cross-correlation data.
Each Gaussian is described by a mean, a variance, and a nor-
malized weight, such that the weights of all Gaussians add
up to 1. The assumption is that if there exists a connec-
tion between two zones, the cross-correlation data should
exhibit a peak centered around the mean time it takes ob-
jects to move between the zones. In other words, one of the
Gaussians should have a larger weight and a lower variance
than the others.

To �t a mixture of m Gaussians to a set of data points we
use the EM algorithm. Expectation (E-step) is achieved by
computing a membership probability P (x i ; Gj) for each data
point x i and each GaussianGj , representing the likelihood
that x i belongs to Gj . Maximization (M-step) is achieved by
updating the weight, mean and variance of each Gaussian.

Figures 3 and 4 show the result of �tting a mixture of
m Gaussians to the cross-correlation data for two di�erent
pairs of entry/exit zones: one for which a connection exists,
and one for which no connection exists. In both �gures m is
varied from 3 to 6, corresponding to graphs (a)-(d). The red
curve shows the cross-correlation data, while the blue curve
shows the mixture of Gaussian �t. Note that the cross-
correlation data for the connected pair of entry/exit zones
consistently exhibits a peak at around 5 seconds for di�erent
values of m.

0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250 300
0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250 300

(a) (b)

0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0 50 100 150 200 250 300

(c) (d)

Figure 4: Mixture of Gaussian �t for a pair of dis-
connected entry/exit zones, m 2 [3: :6].

It is apparent from the �gures that the mixture of Gaus-
sians does not always detect peaks accurately. For example,
when m = 6 for the pair of disconnected entry/exit zones,
one Gaussian clearly dominates the others, which would in-
dicate a corresponding peak in the cross-correlation data.
On many occasions, such spurious peaks cause the approach
to incorrectly infer that a connection exists between a pair
of entry/exit zones. In general, this might happen for any
value of m.

The main reason for these false detections is the small
number of data points in the surveillance scenario. In our
case, even after recording 28 hours of video, the number of
data points is often in the low hundreds, sometimes less.
In contrast, Makris et al. [9] report having thousands of
data points, and as a result, the cross-correlation graphs are
smoother, leaving less room for errors when �tting a mixture
of Gaussians.

To increase the robustness of the approach and reduce the
number of false detections, we �t a mixture of m Gaussians
to the cross-correlation data for each value of m in the inter-
val [3: :10]. A peak is only inferred if the weight/variation
ratio of the best Gaussian is at least twice as high as all oth-
ers, for eachm 2 [3: :10]. In addition, the mean of the corre-
sponding Gaussian should remain in the same place (else the
peak is not consistent). This is easily checked by computing
the variance across the means of the best Gaussians, which
should be low.

In addition to detecting connections between camera views,
the above approach can be used to compute an estimated
probability that an object currently being viewed will appear
in another camera view shortly. Given the current location
and direction of movement of the object, we �rst estimate
the entry/exit zone at which the object will leave the cur-
rent camera view. For each connected entry/exit zone of the
other camera view, we can estimate a probability of transit-
ing to that zone in the following way.

Each recorded trajectory leaving the entry/exit zone of
the current camera view is associated with zero or more
data points x1 ; : : : ; x p in the cross-correlation data for the
two zones. Recall that the mixture of Gaussians assigns a

1-2 1-7 1-8 2-3 2-5 2-7 2-8 3-4 3-5 4-5
4 X X X X X X
5 X X X X X X X X X X
6 X X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X

Table 1: Connections detected for di�erent values
of Cmax .

membership probability P (x i ; Gj) to each such data point
x i and each GaussianGj . We are interested in the member-
ship probability P (x i ; G�), where G� is the Gaussian corre-
sponding to the peak in the data, previously used to infer
a connection between the entry/exit zones. We can either
take the maximum, max i P(x i ; G�), over such membership
probabilities, or compute an average. If the trajectory has
no associated data points in the cross-correlation, we de�ne
the transition probability as max i P(x i ; G�) = 0. To com-
pute the probability P (A; B) of transiting from zone A to
zone B , we compute the average across all such trajectories
t 2 T as well asm, the number of Gaussians:

P (A; B) =
1

8jT j

X

t 2 T

10X

m =3

max
i

P(x i ; G�)

We can now rank alternative camera views according to the
likelihood of transiting to that view.

3.3 Results
We tested the approach on the data recorded from the

eight cameras in our network. Table 1 shows the connections
found between camera views, for di�erent values of Cmax ,
the maximum number of clusters. A checkmark for X-Y
indicates that at least one connection was detected between
an entry/exit zone in camera X and a zone in camera Y.

From the overview in Figure 1 we can conclude that the
only connections missing in the table are those involving
camera 6 (5-6, 6-7, and possibly 4-6). Moreover, there are
no false detections, implying that the approach is quite ro-
bust, even when varying the value of Cmax . For Cmax = 4,
the connection between cameras 1 and 8 is missing. All
other missing connections in the table can either be inferred
by pairs of connections (for example, camera 2 is connected
to camera 5 via camera 3), or from overlap detection (de-
scribed in the next section). The best detection seems to be
achieved for Cmax = 5 and Cmax = 6. There is a tradeo� be-
tween having more precise entry/exit zones (more clusters)
and enough data to capture connections between zones (less
clusters).

We also see that the approach detects some connections
that might not be obvious to a human studying the overview
in Figure 1, for example those between camera 2 and cam-
eras 5 and 8, respectively. The reason that connections to
camera 6 are missing is that the video streams did not yet
contain enough examples of objects moving to and from that
view, even after recording 28 hours of video.

4. OVERLAP DETECTION
In this section we describe our approach for detecting over-

lap, i.e., instances of objects appearing simultaneously in
two or several camera views. Our approach is based on ex-

Figure 5: Overlap detected for cameras 2 and 7.

clusion [14], which we adapted to the surveillance scenario.
Exclusion divides each camera view into an M � N grid, and
maintains an occupancy vector OC for each grid cell C, with
each element OC (t) of the occupancy vector corresponding
to a time interval t . An element OC (t) = 1 means that an
activity was detected within the grid cell during the interval
t , while OC (t) = 0 means that no activity was detected.

The occupancy vectors of two grid cells A and B can then
be compared to produce a measure of relatedness. The ex-
clusion E (B; A) = jf t j OA (t) = 1 ^ OB (t) = 0 gj of B with
respect to A is the number of time intervals for which an ac-
tivity was detected in A but not in B . To decrease noise, the
occupancy vector of B is padded by setting OB (t) to 1 for
each time interval t such that OC (t) = 1 for some neighbor-
ing cell C of B . A connection between A and B is inferred
if the ratio E (B; A)=H(A) is inferior to a threshold, where
H (A) = jf t j OA (t) = 1 gj is the total number of ones in A's
occupancy vector.

In surveillance applications such as ours, most of the
recorded video is void of any activity. As a result, the oc-
cupancy vector OC of a grid cell C consists mostly of zeros.
We modify exclusion to make it more e�cient in this case
(as a result, the algorithm should really be called inclusion).

Instead of representing each occupancy vector explicitly,
our approach is to store a mapping f i : T ! 2MN for each
camera view Vi , where T is the set of time intervals. Given
t 2 T , f i (t) is the subset of grid cells in camera view Vi

for which an activity was detected in the interval t . We
also de�ne a mapping gi : T ! 2MN such that gi (t) is the
result of extending f i (t) to all neighboring grid cells (the
equivalent of padding the occupancy vectors). If the amount
of detected activity is low, both mappings are empty for
most values of t .

Instead of E (B; A), we compute the inclusion I (B; A) =
jf t j OA (t) = OB (t) = 1 gj of grid cell B with respect to
grid cell A. Note that inclusion is equivalent to exclusion
in the sense that E (B; A)=H(A) = (H (A) � I (B; A))=H(A).
To compute inclusion between a pair of camera views Vi and
Vj , we initialize I (B; A) to 0 for each pair of grid cells A and
B . For camera view Vi , we go through each pair (t; f i (t)) of a
time interval and a non-empty set of occupied grid cells, and
retrieve gj (t) to �nd the associated extended set of occupied
grid cells in camera view Vj . We then simply increment
I (B; A) for each A 2 f i (t) and B 2 gj (t). Since jgj (t)j is
usually much smaller than MN , it is considerably faster to
update I (B; A) than it would be to update E (B; A).

4.1 Results
We used a 20� 20 grid for each of the eight cameras,

and performed exclusion as described above with time in-
tervals of one second each. For 28 hours of video, an ex-

Figure 6: Standard display with a camera view se-
lected.

plicit occupancy vector would require 28 � 3,600 � 100,000
bits. Since there are 8� 20 � 20 = 3,200 grid cells, the total
memory requirement would be around 40MB. In contrast,
our mapping only contains a total of 112,000 instances of
grid cells for which an activity was detected. We also need
400� 400 = 160,000 integer values to representI (B; A) for a
pair of camera views Vi and Vj . The total memory require-
ment of our approach is less than 1MB, a saving of well over
one order of magnitude.

In addition, there are 400 � 400 � (8 � 7)=2 � 4:5 million
pairs of grid cells in di�erent cameras. Computing exclusion
explicitly for each pair of grid cells with occupancy vectors
of length 100,000 would involve 450 billion operations. In
contrast, our approach computes inclusion between each pair
of grid cells using less than 1:5 million operations in total.

To infer a connection between grid cells A and B , we used
a threshold of 0:5 for the ratio (H (A) � I (B; A))=H(A), and
to reduce noise we also requiredH (A) � 15. If a connec-
tion was detected between two camera views, we computed
the bounding boxes of the involved grid cells in each camera
view, and assumed that an overlap existed between the two
bounding boxes. As an example, Figure 5 shows the regions
of overlap detected for cameras 2 and 7. Although the two
cameras are far apart, overlap is detected with high accu-
racy. All the other instances of overlap (between camera
pairs 1-2, 1-7, 3-5, and 4-5) are easily detected using this
technique.

5. A SURVEILLANCE APPLICATION
This section describes our surveillance application inter-

face, designed to facilitate interactive browsing of the
recorded surveillance content. The application displays a
main camera view, and uses the results from the learning de-
scribed in the previous sections to suggest alternative views
that are likely to contain the same activity as the main view.
The operator can then switch between views to manually
track a moving object across views.

Figure 6 shows the standard display when a camera view
has been selected. The selected camera view appears in
the top left corner. Suggested alternative views appear to
the right of the main view. The lower half of the screen
displays all camera views, which makes it easy to maintain
a global view of the network. Note that the color shading
corresponds to the selected and suggested views. Clicking
on any view toggles the main view as well as the suggested
alternatives. By clicking on the timeline for a view we can

jump to di�erent segments of the video stream.

6. RELATED WORK
Several researchers have proposed techniques for automat-

ically learning a topology of a camera network from data.
Several techniques require either manually marked corre-
spondences between images, or a training stage where only
one object is observed [5, 1]. Other approaches are sim-
ilar in nature to ours, and infer a topology by measuring
statistical dependence [11, 13]. Nam et al. [10] performs
more detailed tracking of objects and autonomously infer
whether two objects are the same, although this approach is
computationally more expensive. Farrell and Davis [2] use a
technique similar to ours, but treat camera views as a single
entry/exit zone.

Apart from exclusion, there are other techniques for de-
tecting overlap. Khan et al. [6] accumulate evidence for
overlap by estimating the boundary of each camera's �eld
of view in all other cameras. Lee et al. [7] estimate motion
trajectories for people walking on a plane, and then match
trajectories between cameras. However, this assumes planar
motion and accurate tracking over long periods of time.

Finding overlap between cameras is also related to com-
puting a homography for two or several cameras [4]. A ho-
mography enables translation and rotation of images in one
camera view with respect to the other(s). However, comput-
ing a homography either requires knowledge of the precise
location and orientation of cameras, or careful calibration
and testing to acquire the correct parameters. In contrast,
the technique we chose for detecting overlap is completely
unsupervised and generally much faster. Although the ac-
quired knowledge is not as precise, it is su�ciently accurate
for our purposes.

7. CONCLUSIONS
We have presented a novel surveillance application that

enables an operator to e�ciently browse the recorded video
streams of a surveillance camera network. The application
relies on learning techniques to identify related views, both
when objects are temporarily out of view and when camera
views overlap. Related views are then suggested as alterna-
tive views to the user. We tested the learning approach in
an actual surveillance camera network, and results indicate
that the approach is both accurate and robust.

In the future, we plan to implement real-time tracking
of objects across camera views. Running the tracking algo-
rithm of Section 2 online and continuously updating the con-
nections between camera views inferred from learning would
enable the application to e�ciently adapt the camera views
proposed in a real-time context. We can then compute the
probability of transiting to alternative camera views, using
the approach discussed in Section 3. Finally we can update
our estimation of the object's location based on new tracking
information from di�erent camera views.

In an online context, we would also like to investigate the
possibility of incorporating moving cameras into the surveil-
lance camera network. Taking full advantage of moving cam-
eras requires real-time tracking of moving objects, since the
direction in which to point a camera depends on the ob-
ject(s) currently appearing in that camera view or related
views. As a �rst step, we will simulate moving cameras
by placing several overlapping cameras next to each other.

Once real-time tracking is in place we plan to perform ex-
periments with actual moving cameras.

Acknowledgments
This work was funded by APIDIS (www.apidis.org).

8. REFERENCES
[1] A. Dick and M. Brooks. A Stochastic Approach to

Tracking Objects Across Multiple Cameras. In
Proceedings of the Australian Joint Conference on
Arti�cial Intelligence , pages 160{170, 2004.

[2] R. Farrell and L. Davis. Decentralized Discovery of
Camera Network Topology. In Proceedings of the 2nd
ACM/IEEE International Conference on Distributed
Smart Cameras, 2008.

[3] G. Hamerly and C. Elkan. Learning the K in
K-Means. In Advances in Neural Information
Processing Systems, volume 16, pages 281{288, 2003.

[4] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision . Cambridge University Press,
2003.

[5] O. Javed, Z. Rasheed, K. Sha�que, and M. Shah.
Tracking Across Multiple Cameras with Disjoint
Views. In IEEE International Conference on
Computer Vision , pages 952{957, 2003.

[6] S. Khan, O. Javed, Z. Rasheed, and M. Shah. Human
Tracking in Multiple Cameras. In IEEE International
Conference on Computer Vision, pages 331{336, 2001.

[7] L. Lee, R. Romano, and G. Stein. Establishing a
Common Coordinate Frame. IEEE Transactions on
Pattern Analysis and Machine Intelligence ,
22(8):758{767, 2000.

[8] D. Makris and T. Ellis. Automatic Learning of an
Activity-Based Semantic Scene Model. In IEEE
Conference on Advanced Video and Signal Based
Surveillance, pages 183{188, 2003.

[9] D. Makris, T. Ellis, and J. Black. Bridging the Gaps
between Cameras. In IEEE Conference on Computer
Vision and Pattern Recognition , pages 205{210, 2004.

[10] Y. Nam, J. Ryu, Y. Choi, and W. Cho. Learning
Spatio-Temporal Topology of a Multi-Camera
Network by Tracking Multiple People. In World
Academy of Science Engineering and Technology,
volume 24, pages 175{180, 2007.

[11] C. Stau�er. Learning to Track Objects Through
Unobserved Regions. In IEEE Workshop on Motion
and Video Computing, pages 96{102, 2005.

[12] C. Stau�er and W. Grimson. Adaptive Background
Mixture Models for Real-Time Tracking. In IEEE
Conference on Computer Vision and Pattern
Recognition, pages 246{252, 1999.

[13] K. Tieu, G. Dalley, and W. Grimson. Inference of
Non-Overlapping Camera Network Topology by
Measuring Statistical Dependence. In IEEE
International Conference on Computer Vision , pages
1842{1849, 2005.

[14] A. van den Hengel, A. Dick, H. Detmold,
A. Cichowski, and R. Hill. Finding Camera Overlap in
Large Surveillance Networks. In Lecture Notes in
Computer Science: Computer Vision - ACCV 2007 ,
volume 4843, pages 375{384, 2007.

