
Scaling Up Multiagent Planning: A Best-Response Approach

Anders Jonsson
Dept. Tecnologies de la Informació i les Comunicacions

Universitat Pompeu Fabra
08018 Barcelona, Spain

Michael Rovatsos
School of Informatics

The University of Edinburgh
Edinburgh EH8 9AB, United Kingdom

Abstract

Multiagent planning is computationally hard in the gen-
eral case due to the exponential blowup in the action
space induced by concurrent action of different agents.
At the same time, many scenarios require the computa-
tion of plans that are strategically meaningful for self-
interested agents, in order to ensure that there would
be sufficient incentives for those agents to participate
in a joint plan. In this paper, we present a multiagent
planning and plan improvement method that is based on
conducting iterative best-response planning using stan-
dard single-agent planning algorithms. In constrained
types of planning scenarios that correspond to conges-
tion games, this is guaranteed to converge to a plan that
is a Nash equilibrium with regard to agents’ preference
profiles over the entire plan space. Our empirical eval-
uation beyond these restricted scenarios shows, how-
ever, that the algorithm has much broader applicability
as a method for plan improvement in general multiagent
planning problems. Extensive empirical experiments in
various domains illustrate the scalability of our method
in both cases.

Introduction
Multiagent planning, i.e. planning in the presence of multi-
ple agents, has been a long-standing concern in the multia-
gent systems community (Durfee 1999), as the coordination
of individual agents’ planning processes is a hard problem in
systems that allow concurrent action between autonomous,
rational agents. While much of the research in the area
has focused on managing ongoing collaborative activity at
run-time (Durfee and Lesser 1991), defining communica-
tion mechanisms for collaborating planners (Durfee, Lesser,
and Corkill 1985; Grosz and Kraus 1996), and dealing
with the relationships between individual agents’ local plans
(Cox and Durfee 2005; Cox, Durfee, and Bartold 2005;
Witteveen et al. 2005; Dimopoulos and Moraitis 2006),
other work focuses more on the core algorithmic problems
created by the presence of multiple agents during offline
plan synthesis itself. In terms of dealing with distributed ac-
tions in purely cooperative domains, Boutilier and Brafman
(2001) investigated the semantics of concurrent actions in

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

partial-order planning, Brafman and Domshlak (2008) intro-
duced a novel notion of loosely coupled agents that limits the
combinatorial blow-up of planning complexity caused by
multiple agents, and developed a more scalable centralised
multiagent planner based on this concept (Nissim, Brafman,
and Domshlak 2010). On the strategic side of multiagent
planning, where self-interested agents want to achieve their
local goals but depend on each others’ actions, early at-
tempts used social choice theory during the synthesis of mul-
tiagent plans (yet without using scalable planners) (Ephrati
and Rosenschein 1994) tried to model notions of equilib-
ria by analysing the relationships between different solu-
tions in game-theoretic terms (Bowling and Veloso 2003;
Larbi, Konieczny, and Marquis 2007). Others, more re-
cently, focused on a more computational view of “planning
games” (Brafman et al. 2009; 2010).

As has become clear from this body of research, two fun-
damental problems underlie the design of algorithms to con-
struct multiagent plans: Firstly, the exponential blowup in
the action space induced by allowing concurrent, indepen-
dent action. And, secondly, in settings which involve higher
levels of agent autonomy, additionally satisfying strategic
side-conditions such as individual rationality to provide suf-
ficient incentives for agents to participate in a joint plan.
This makes it inherently hard to apply state-of-the-art single-
agent algorithms, which have been shown to scale well in
many complex domains in practice, directly to multiagent
problems. Therefore, it is not surprising that none of the
aforementioned approaches has attempted this.

In this paper, we present a multiagent planning and plan
improvement method based on conducting iterative best-
response planning steps, where each individual planning
procedure only uses standard off-the-shelf (single-agent)
planning technology. Our method is based on starting from
an arbitrary initial joint plan, and then iterating over all
agents repeatedly using cost-optimal planning in such a way
that each agent optimises its “reaction” to the current set of
other agents’ local plans. We suggest a translation of the
multiagent planning process to a transformed single-agent
problem that enables use of standard planners, while en-
suring that the resulting global plan is still valid (i.e. other
agents’ plans remain executable). At the same time, this cal-
culation of local best responses avoids exponential blowup
despite allowing us to define arbitrary interactions between

individual agents’ activities.
The contribution of our work is threefold: Firstly, we

present a novel best-response planning method for general
iterative plan improvement starting from arbitrary multia-
gent plans, and using standard planners. Secondly, we show
how in a specific class of planning problems that correspond
to congestion games, this method enables fast and scalable
computation of equilibria for very large game instances. We
are interested in such equilibria because of their compati-
bility with agents’ self-interest, in the sense that no ratio-
nal agent would have an incentive to deviate from such a
joint plan unilaterally. In contrast to (Brafman et al. 2009;
2010), this follows the tradition of non-cooperative game
theory, where it is not assumed that agreements among
agents can be enforced, and every agent can only adapt lo-
cally to what other agents are doing.

Thirdly, we show that despite the absence of convergence
or optimality guarantees, our method proves to be useful for
improving general multiagent plans in scenarios in which an
initial plan is available but could be further optimised.

We proceed as follows: We first introduce the over-
all problem and the suggested solution method, illustrating
these with a simple example. Then, we apply our model to
congestion games (Rosenthal 1973; Monderer and Shapley
1996), and show how a slightly relaxed form of cost func-
tion satisfies the necessary properties and gives us more flex-
ibility in the kinds of planning problems for which we can
derive Nash equilibria. An extensive empirical evaluation in
the subsequent section illustrates the benefits of our method
in congestion planning and other multiagent planning prob-
lems. We close with some conclusions and an outlook on
future avenues of research on the topic.

Multiagent Planning Problems
Our planning formalism is based on a STRIPS-style model
of classical planning under full observability. States are rep-
resented by sets of ground fluents taken from a set F , and ac-
tions are given as tuples a = 〈pre(a), eff(a)〉, where eff(a)
contains positive fluents p to be added to the state and neg-
ative fluents ¬p to be deleted from the state after execution
of a. For a state s ∈ 2F , action a can only be executed if
pre(a) ⊆ s, and will result in state

θ(s, a) = (s ∪ {p|p ∈ eff(a)}) \{p|¬p ∈ eff(a)}.

While this definition does not include negative precondi-
tions, it is easy to accommodate them if needed. Our for-
mulation of a multiagent planning problem (MAP) borrows
heavily from MA-STRIPS (Brafman and Domshlak 2008)
and coalition-planning games (Brafman et al. 2009). It con-
siders the agents’ individual goals and cost functions (de-
fined over the joint action space) as independent, but as-
sumes that the individual reward for an agent is entirely cap-
tured by the cost function. That is, it does not introduce any
extra reward associated with goal achievement; if this re-
ward is identical for all goal-achieving states and zero else,
rewards for goal achievement do not add to the overall ex-
pressiveness of the problem. We define a MAP as a tuple
Π = 〈N,F, I, {Gi}ni=1, {Ai}ni=1,Ψ, {ci}ni=1〉, where

• N = {1, . . . , n} is the set of agents,
• F is the set of fluents,
• I ⊆ F is the initial state,
• Gi ⊆ F is agent i’s goal,
• Ai is agent i’s action set,
• Ψ : A→ {0, 1} is an admissibility function,
• ci : ×n

i=1Ai → R is the cost function of agent i.
We writeA = A1×. . .×An for the joint action set assuming
a concurrent, synchronous execution model, and G = ∧iGi

for the conjunction of all agents’ individual goals.
A MAP typically imposes concurrency constraints regard-

ing actions that cannot or have to be performed concurrently
by different agents to succeed (Boutilier and Brafman 2001).
Instead of representing the set of joint actions explicitly,
the admissibility function Ψ indicates whether a joint action
a ∈ A is part of the MAP (Ψ(a) = 1) or not (Ψ(a) = 0).
Although the number of joint actions is generally exponen-
tial in the number of agents, Ψ can usually be represented
much more compactly. Crucially, our approach requires be-
ing able to check whether a joint action is part of the MAP
in a fast way, which is another motivation for including Ψ.

A plan π = 〈a1, . . . , ak〉 is a sequence of joint actions
aj ∈ A such that a1 is applicable in the initial state I (i.e.
pre(a1) ⊆ I), and aj is applicable following the application
of a1, . . . , aj−1 (i.e. pre(aj) ⊆ θ(I, 〈a1, a2, . . . , aj−1〉),
where θ is canonically extended to sequences of actions),
for all 2 ≤ j ≤ k. We say that π solves the MAP Π if the
goal state G is satisfied following the application of all ac-
tions in π, i.e. G ⊆ θ(π). The cost of a plan π to agent i is
given by Ci(π) =

∑k
j=1 ci(a

j).
Before describing our method for best-response planning

in MAPs, we need to introduce a few more auxiliary defi-
nitions: To start off with, following Brafman and Domshlak
(2008), we can partition the set of fluents into

F = F1] . . .] Fn] Fpub

using the usual distinction between public and private flu-
ents. For this, let F (Ai) = ∪a∈Ai

(pre(a) ∪ eff(a)) be the
set of all fluents appearing inAi. The private fluents of agent
i are defined as

Fi = F (Ai)\ (∪j 6=iF (Aj))

and capture the fluents entirely under i’s control. This leaves

Fpub = F\ (∪iFi)

as the set of remaining public fluents, over which at least
two agents interact. It follows directly from this distinction
that each action ai ∈ Ai is restricted to have preconditions
and effects on the fluents in Fi ∪ Fpub only. Note also that
the agents’ individual goals Gi are not independent, as they
may interact over public fluents.

Furthermore, we define the preconditions and effects of a
joint action (a1, . . . , an) ∈ A as the union of the precon-
ditions and effects of its constituent single-agent actions ai.
We use the notation a = (ai, a−i) which involves the short-
hand a−i to denote the joint action of all agents but i.

Finally, for reasons which will become obvious below, we
add a no-op action noopi with no effects to the action set
Ai of each agent i. Our intention is that an agent should
always be able to select the no-op action once it is done
with its other actions, but depending on the problem an
agent may also be allowed to choose it in the middle of a
plan. We define the cost to agent i of the no-op action as
ci(noopi, a−i) = 0 for any a−i.

Best-Response Planning
In principle, solving a MAP involves an action space that
grows exponentially in the number of agents involved. Due
to the limited scalability of cost-optimal planning, this issue
is particularly problematic when attempting to do centralised
planning with full concurrency and to minimise an overall
cost measure (e.g. social welfare

∑
i Ci(π)). In more strate-

gic settings, a MAP algorithm has to additionally respect
criteria such as individual rationality to provide an incentive
for self-interested agents to participate (Brafman et al. 2009;
2010). This makes the plan search problem harder still, as a
“solution” in this setting can only be a plan that is compati-
ble with all agents’ preferences and robust against individual
deviation, e.g. a plan that is a Nash equilibrium.

Our method aims at tackling both these issues, by itera-
tively solving simpler best-response planning (BRP) prob-
lems from the point of view of an individual agent i. The
basic idea is that given some current plan πk which solves a
MAP Π, agent i calculates a plan πk+1 which minimises i’s
cost while only modifying i’s actions in πk:

πk+1 = arg min{Ci(π)|π identical to πk for all j 6= i}
For this purpose, given a joint plan π of length k that
solves Π, we define a BRP problem with costs as Πi =
〈F ′, I ′, G′, A′i, c′〉, where
• F ′ = Fi ∪ Fpub ∪ {time(0), . . . , time(k)},
• I ′ = (I ∩ F ′) ∪ {time(0)},
• G′ = (G ∩ F ′) ∪ {time(k)},
• For each aj−i and ai ∈ Ai, construct the joint action a =

(ai, a
j
−i). If Ψ(a) = 1, add an action a′ to A′i with

– pre(a′) = (pre(a) ∩ F ′) ∪ {time(j − 1)}
– eff(a′) = (eff(a) ∩ F ′) ∪ {time(j),¬time(j − 1))}
– c′(a′) = ci(a).

• For each action ai ∈ Ai, add an action a′′ to A′i with
– pre(a′′) = pre(ai) ∪ {time(k)}
– eff(a′′) = eff(ai)

– c′(a′′) = ci(ai,noop−i).
This construction is based on three ideas: Firstly, agent i
only has to worry about satisfying the goal state on fluents
in Fi ∪ Fpub, since it has no influence over the remaining
fluents. This allows us to ignore all fluents Fj for j 6= i in
F ′, I ′ and G′.

Secondly, agent i is only provided with actions in step
j that include the preconditions and effects of the actions
taken by other agents in π, i.e. it is forced to pick only ac-
tions that comply with other’s “fixed” actions in terms of

Fi∪Fpub. Thereby, additional fluents time(0), . . . , time(k)
are used to ensure that all joint actions of other agents (a1−i
through ak−i) are executed at the right time.

Thirdly, the individual agents’ plans may have different
lengths, which is accounted for by no-op actions. Recalling
that noopj is always applicable whenever agent j is done
with its other actions, we allow agent i to extend the plan π
with additional joint actions a′′ that correspond to all other
agents performing noopj actions. Since such actions a′′ are
only admissible after the first k joint actions (due to the pre-
condition time(k)), the no-op action noopj is always appli-
cable for each agent j 6= i and does not alter its other action
choices. The cost of these actions a′′ is 0 to each agent j 6= i
by definition, while the cost to agent i reflects the cost of its
action ai when all other agents are inactive.

Theorem 1 Given a joint plan π that solves Π and a solu-
tion πi to the BRP problem Πi, the joint plan π′ that results
from replacing the actions of agent i in π with πi solves Π.

Proof Replacing the actions of agent i does not affect flu-
ents in Fj , j 6= i. Since the goal on those fluents is satisfied
by π, they are satisfied by π′ also. The goal on the remaining
fluents Fi∪Fpub is satisfied by πi. Moreover, πi ensures that
the pre-conditions on public fluents of other agents’ actions
are satisfied. Thus π′ solves Π.

With these provisions made, we can define a best-
response planner for agent i as an algorithm which, given
a solution πk to a MAP Π finds a solution πk+1 to the trans-
formed planning problem Πi with minimum cost Ci(π

k+1)
among all possible solutions. Since Πi is a single-agent
planning problem, any cost-optimal planner can be used as a
best-response planner. We borrow the term “best response”
from game theory here in the following sense: Assume each
agent’s contribution to a plan π is denoted by πi (a sequence
of ai ∈ Ai), with π−i the joint plan of all remaining agents.
If we define the utility of agent i as

ui(πi, π−i) =

{
−Ci(πi, π−i) if (πi, π−i) is feasible
−∞ else

and πi is the solution to Πi based on π as above, then πi is a
best-response strategy for i in the game-theoretic sense.

Example
To illustrate the suggested transformation, consider the net-
work routing example shown in Figure 1. Three packets
(agents) 1, 2, and 3 are using links between nodes in a grid-
like network to move from origin to destination. We assume
that the cost for each agent to move across a link equals the
number of agents using it concurrently in the same time step.

First, consider a situation with no public fluents Fpub ,
i.e. every agent can use any local action independently
without any side-effects on others except a potential ef-
fect on cost. We have fluents at(i, n) for agent i being
located in node n, and link(l, n1, n2) to represent links
(two for each link to capture both directions). The only
(single-agent) action for agent i is move(i, l, n1, n2) =
〈{at(i, n1), link(l, n1, n2)}, {¬at(i, n1), at(i, n2)}〉, and
Gi = {at(i, ni)} for some target node ni.

!

"

#

!

"

!

"

#

!

"

Figure 1: A routing example. Targets of packets are shown
as shaded shapes, paths as shaded arrows. Edges concur-
rently used by more than one agent (e, f) are shown with a
thicker shading.

Starting from an initial plan as shown in the top figure,
where agents 1 and 2 share link e (at time step 3) and agents
2 and 3 share link f (at time step 4), we sketch the BRP step
of agent 1. As actions a′ in our definition above, we add new
move-actions of the form

〈{at(1 , n1), link(l, n1, n2), time(j − 1)},
{¬at(1 , n1), at(1 , n2),¬time(j − 1), time(j)}〉

for each pair of nodes n1, n2 connected by a link l and each
j ∈ {1, . . . , k}, where k = 8 is the number of actions
in the longest (3’s) plan. Here, we need not consider any
new preconditions or effects other than time, as there are
no (other) public fluents, but when j = 3 holds we would
have to set c′(a′) = 2 for the new move-action along link e,
since this link is used by agent 2 at that time step, and this
would be also the case for any other joint actions in which
other agents were already using links. In the process of cost-
optimal planning, agent 1 will avoid e as alternative links are
available that have cost of 1 rather than 2, resulting in the sit-
uation depicted in the bottom figure.

Now, to illustrate the use of public fluents, consider a
slightly different situation, where agents can switch links on
or off. We can model this using public fluents on(l) such
that each move action along a link l has an additional pre-
condition on(l). Each agent has two additional actions to
switch links on and off:

〈{at(i, n1), link(l, n1, n2),¬on(l)}, {on(l)}〉,
〈{at(i, n1), link(l, n1, n2), on(l)}, {¬on(l)}〉.

If links are initially turned off, agents have to first turn them
on before sending packets. Given an initial joint plan such
that agent 1 switches on a link l′ later used by agent 2, each
action a′ of the BRP problem of agent 1 now includes pre-
conditions on the public fluents on(l) of other agents’ ac-
tions. A plan solving the BRP problem cannot deviate by

not switching on l′, since that would fail to satisfy the pre-
condition on(l′) of each action a′ corresponding to the time
step j for which agent 2 sends a packet across link l′.

Regarding the “postfix” actions a′′ added in our transfor-
mation, consider how agent 3 computed its plan before the
situation shown in the top figure: Since agents 1 and 2 had
plans of length 5, we add another move-action with an ad-
ditional precondition time(5). Beyond this time step, time
does not progress in terms of fluents, and the actions have
cost independent of others’ actions as they are now inactive.

Congestion Planning
In the general case, iterative BRP with all agents taking
turns starting from an initial solution π0 to the MAP Π is
not guaranteed to converge. However, it is known from
game theory that iterative BRP will converge to a pure-
strategy (i.e. deterministic) Nash equilibrium for a class
of games known as congestion games (Rosenthal 1973;
Monderer and Shapley 1996). In this section, we will define
a class of congestion planning problems, which we show to
satisfy the definition of congestion games, such that the pro-
cedure defined above is guaranteed to converge.

We start by reviewing the game-theoretic definition and
then introduce planning problems that are closely related
to congestion games. A congestion game is a tuple
〈N,R,A, c〉, where
• N = {1, . . . , n} is a set of agents,
• R = {r1, . . . , rm} is a set of resources,
• A = A1 × . . .×An, where Ai ⊆ 2R − ∅ is the action set

of agent i,
• c = (cr1 , . . . , crm), where cr : N→ R is the cost function

of resource r.
In such games, each agent acts by selecting a non-empty
subset of resources. The utility function ui : A → R of
agent i is defined as

ui(a) = −
∑
r∈ai

cr(#(r, a)), (1)

where ai is the action choice of i in the joint action a and
: R × A → N is a counting function that returns the
number of agents in N that select resource r ∈ R in a ∈ A.

Given a congestion game, we can define a potential func-
tion Q : A→ R as

Q(a) =
∑
r∈R

#(r,a)∑
j=1

cr(j). (2)

For two joint actions (ai, a−i) and (a′i, a−i) that only differ
in the action choice of agent i, it is possible to show that
Q(ai, a−i) − Q(a′i, a−i) = ui(ai, a−i) − ui(a

′
i, a−i). A

game with this property is known as a potential game (Mon-
derer and Shapley 1996). If agent i acts greedily to increase
its utility given a fixed action choice of the other agents,
the potential increases by an equivalent amount. Thus best-
response planning will always have the effect of increasing
the overall potential and, if repeated, this process will even-
tually converge to a pure-strategy Nash equilibrium.

To exploit this property in a planning setting, we first
make the utility function more interesting from a planning
perspective. For each i ∈ N , we add a term to the utility
function ui, obtaining a new utility function

u′i(a) = ui(a)− di(ai), (3)

where di : Ai → R depends on the action choice ai ∈ Ai of
agent i only. We also define an associated potential function

Q′(a) = Q(a)−
∑
j∈N

dj(aj). (4)

It is easy to prove that this is still a potential game:

Q′(ai, a−i) −Q′(a′i, a−i)
= Q(ai, a−i)− di(ai)−

∑
j∈N−{i}

dj(aj)

−Q(a′i, a−i) + di(a
′
i) +

∑
j∈N−{i}

dj(aj)

= Q(ai, a−i)−Q(a′i, a−i)− di(ai) + di(a
′
i)

= ui(ai, a−i)− ui(a′i, a−i)− di(ai) + di(a
′
i)

= u′i(ai, a−i)− u′i(a′i, a−i).

With this, we can define a congestion planning problem as a
MAP Π by introducting a set of resourcesR = {r1, . . . , rm}
and, for each resource r ∈ R, a cost function c′r : N → R.
Each action ai ∈ Ai of agent i uses a (possibly empty) set of
resources R(ai) ⊆ R. The following additional restrictions
are imposed on Π:

• Fpub = ∅.
• Ψ(a) = 1 for any a ∈ A.

• The cost function of agent i is of the form ci(a) =∑
r∈R(ai)

c′r(#(r, a)) + di(ai), where di : Ai → R de-
pends on the action choice ai of agent i only.

• A no-op action uses no resources and incurs no cost, i.e.,
R(noopi) = ∅ and di(noopi) = 0.

Note that for each joint action a ∈ A and each agent i, it
holds that ci(a) = −u′i(a), where u′i is the modified util-
ity function for congestion games from Equation (3). Thus,
the modified potential function Q′ in Equation (4) satisfies
Q′(ai, a−i)−Q′(a′i, a−i) = ci(a

′
i, a−i)− ci(ai, a−i).

In a congestion planning problem, each agent i can plan
individually to reach its goal Gi = G ∩ Fi from its initial
state Ii = I∩Fi. No other agent can contribute to achieving
Gi since the fluents in Gi are private to agent i. However,
there is still a loose interaction between agents since the cost
of a plan to i depends on how many other agents use the
same resources simultaneously.

Theorem 2 For any congestion planning problem, best-
response planning converges to a pure-strategy Nash equi-
librium.

Proof For each plan π = 〈a1, . . . , ak〉, define a potential
function Q(π) =

∑k
j=1Q

′(aj). Consider two plans π =

〈a1, . . . , ak〉 and π′ = 〈a1′, . . . , ak′〉 that only differ in the
action choices of agent i. We have

Q(π)−Q(π′) =
∑k

j=1

[
Q′(aj)−Q′(aj ′)

]
=

∑k
j=1

[
ci(a

j ′)− ci(aj)
]

= Ci(π
′)− Ci(π).

In other words, a congestion planning problem is a potential
game such that if one agent greedily decreases its cost given
a fixed selection of actions of the other agents, the potential
increases by an equivalent amount.

Recall that our definition of best-response planning allows
an agent i to extend a plan π with additional joint actions.
We show that the above analysis holds in this case also. Let
π′ be the extended plan, i.e., π′ includes m joint actions in
addition to the k actions of π. Then we can extend π with m
joint actions consisting of the no-op action for each agent,
obtaining a new plan π′′. Since no-op actions use no re-
sources and incur no cost, it holds that Q(π′′) = Q(π) and
Ci(π

′′) = Ci(π). We can now use the same reasoning as
above for π′′ and π′ since they have the same length and
contain the same actions for agents different from i.
For a congestion planning problem Π, it is easy to come up
with an initial plan π that solves Π: simply let each agent
solve its part of the planning problem on its own, assum-
ing that no other agents use the same resources simultane-
ously. Extend the plan of each agent with the no-op action
until each individual plan has the same length. Finally con-
struct π by joining the actions of each agent. By Theorem
2, starting with π and repeatedly performing best-response
planning for each agent in turn is guaranteed to converge to
a pure-strategy Nash equilibrium. The simple version of our
network routing example in Figure 1 is actually a congestion
planning problem, and illustrates the overall process.

Evaluation
We perform two sets of experiments to evaluate best-
response planning empirically. In the first set of experi-
ments, we test BRP in the network routing domain from our
example, varying the number of nodes of the network as well
as the number of agents. In the second set of experiments,
we test BRP on the three multi-agent domains of Nissim,
Brafman, and Domshlak (2010).

Network Routing Domain In the network routing do-
main, we randomly generate networks of given sizes, adding
nodes to the network one at a time, connecting each node to
k nodes in the existing network, with k a random number
in the range [1. .M]. This process guarantees that the result-
ing network is strongly connected. In the experiments we
use M = 3, which ensures that packets have to travel along
multiple links to reach their destination, while still allowing
packets to choose between multiple possible routes.

For each network, we define a set of resources R =
{l1, . . . , lm}, where l1, . . . , lm are the links of the network.
We associate a random capacity C(l) in the range [1. .10]
with each link l ∈ R. The cost of n agents simultaneously
sending a packet across link l is defined as

c′l(n) = L · n+ Emax{0,n−C(l)}.

Agents T IC FC IT
10 33±17 35 33 2.4
20 87±50 75 71 3.2
30 226±126 128 112 3.4
40 293±322 177 154 3.6
50 334±180 224 192 3.6
60 335±53 280 229 4
70 502±236 353 270 4.2
80 721±263 416 315 4.6
90 836±442 484 368 4.6

100 669±156 595 435 4.4
110 1031±228 686 497 5
120 1041±244 783 540 5
130 1109±133 794 541 5
140 1696±389 944 648 5.4
150 2018±194 1006 699 5.2
160 3225±1592 1253 796 6
170 3874±1571 1366 862 7.2
180 2643±962 1427 879 6
190 3399±1235 1512 984 6.4
200 3484±801 1997 1124 6.4

Table 1: BRP in networks with 100 nodes and a varying
number of agents, with regard to running time (T), initial
cost (IC), final cost (FC), and number of iterations (IT).

The cost is linear as long as the number of packets does
not exceed the link capacity, then becomes exponential –
this roughly emulates models of congestion in computer net-
working. In the experiments we assume L = 1 and E = 2.

For each network we define a congestion planning prob-
lem as a MAP augmented with the set of resources R and
the cost functions c′ = (c′l1 , . . . , c

′
lm

). Each agent has to
send its packet between two distinct nodes of the network,
drawn at random. We allow multiple agents to send packets
between the same pair of nodes.

We use the HSP∗F planner (Haslum 2008) to solve each
BRP problem optimally. Table 1 shows the results of run-
ning BRP in networks of 100 nodes, varying the number of
agents in increments of 10. The results are averaged across 5
networks generated at random for a given number of agents.
The table shows the running time in seconds (T), the total
cost of the initial plan (IC), the total cost of the final plan
(FC), as well as the number of BRP iterations (IT). The first
thing to observe here is that in congestion planning prob-
lems, BRP scales to a number of agents well beyond the
state-of-the-art in general multiagent planning.

We also tested how the number of network nodes influ-
ences running time. Table 2 shows the results of running
BRP for 100 agents, varying the number of nodes in incre-
ments of 10. Here, the results are averaged across 10 net-
works generated at random. For a fixed number of agents,
the smaller the network, the higher the cost of the initial
plan, since there is more congestion in the network. We con-
clude that the more constrained the problem environment,
the higher the relative benefit obtained from using BRP.

IPC Domains We also evaluate BRP in more general
MAPs, with two general objectives in mind: (1) to find

Nodes T IC FC IT
10 64±34 2828941 9344 7.4
20 101±38 16633 908 6.7
30 142±24 1320 575 5.7
40 319±161 911 528 5.9
50 306±73 795 472 5.4
60 477±195 692 439 5.8
70 548±102 605 420 5.1
80 853±415 615 425 4.9
90 1002±530 603 420 4.7

100 713±184 575 423 4.4

Table 2: BRP in networks with 100 agents and a varying
number of network nodes.

out whether or not BRP converges in such problems, de-
spite the lack of convergence guarantees, and (2) to assess
the efficiency and effectiveness of BRP in MAPs with pub-
lic fluents, i.e. when the interaction between agents is more
complex. Unfortunately, there are very few general-purpose
solvers for multiagent planning, making it difficult to come
up with initial plans for such MAPs, which are a prerequisite
for the BRP procedure to be applied.

One exception is the DisCSP solver of Nissim, Brafman,
and Domshlak (2010), which uses distributed constraint sat-
isfaction to coordinate the action selection of agents. To test
the solver the authors reformulated three domains from the
International Planning Competition (Logistics, Rovers, and
Satellite) as MAPs. We use the DisCSP solver to come up
with initial plans for various problems in these domains.

The IPC domains impose concurrency constraints on the
joint actions (e.g. in Logistics, two trucks should not be able
to simultaneously load the same package). We compactly
represent the admissibility function Ψ in the following way:
We first compute invariants of the problem, i.e. sets of flu-
ents such that no more than one can be true at any moment.
For each action of an agent with a public effect, we store the
time step and the corresponding invariant. When generating
the BRP problem associated with an agent, we disallow ac-
tions with public effects on an invariant already occupied by
another agent at the same time step.

Our basic BRP problem formulation prevents joint plans
from becoming shorter, since each agent has to compute a
plan of length at least k, the current length of the joint plan.
However, the above approach makes it possible to define k
as the last time step for which the action of another agent has
a pre-condition or effect on a public fluent. In practice, this
makes it possible to decrease the length of the joint plan.

In each of the three domains we allow agents to choose
no-op actions in the middle of a plan. For each action ai ∈
Ai different from the no-op action and each a−i, we define
ci(ai, a−i) = 1. In other words, the cost of a plan to an
agent equals the number of times the agent chooses an action
different from the no-op action.

In addition to HSP∗F , we implement BRP using LAMA
(Richter and Westphal 2010), allowing us to test whether
the convergence and quality of BRP suffer when using a sat-
isficing planner. We allow LAMA to search for increasingly
cheaper solutions until no more solutions are found. Since

the cost 0 associated with no-op actions makes LAMA slow
(likely due to heuristic plateaus) we associate a base cost
with no-op actions. A base cost of 1 makes LAMA run much
faster, but the quality of the solution suffers since LAMA
does not distinguish between no-op and other actions. In
the experiments we use a base cost of 0.5, which provides a
decent tradeoff between speed and solution quality.

Table 3 shows the results of running BRP in the three IPC
domains. The name of the problem indicates the number of
agents and, for Logistics, the number of packages. The col-
umn DisCSP shows the running time of the DisCSP solver
on each problem, as well as the total cost and makespan
of the resulting solution. In each problem the DisCSP
solver computes solutions with optimal cost, but since the
solver applies actions with public effects in sequence, the
makespan (i.e. length of the joint plan) is suboptimal in Lo-
gistics and Satellite.

The column BRP-Optimal shows the running time of iter-
atively applying BRP using HSP∗F . The table also shows the
number of iterations over all agents required to converge, as
well as the cost and makespan of the resulting solution. The
column BRP-Satisficing shows the same information when
using LAMA to solve the BRP problems. In the largest Lo-
gistics problem (marked with an asterisk) the DisCSP solver
is unable to come up with a solution, so we instead use
LAMA on the original IPC problem to generate a sequen-
tial solution (which involves no concurrent actions at all).

In Logistics, BRP using HSP∗F quickly converges to an
optimal solution with shorter makespan than the initial plan.
This holds true even when the initial plan is purely sequen-
tial, suggesting that combining BRP with sequential plan-
ning may be a viable alternative in large domains. In con-
trast, LAMA reports that the corresponding BRP problems
are unsolvable, even though HSP∗F solves them. The time
predicate appears problematic to LAMA, which typically
prefers to apply no-op actions until all other agents are done
with their actions. Only in later iterations does LAMA find
shorter concurrent plans, but in Logistics any plan has to be
concurrent, which might be what causes LAMA to fail.

In Rovers, the DisCSP solver outputs plans with optimal
cost and makespan, depriving BRP of the opportunity to im-
prove on the initial plan. Still, BRP using LAMA converges
and does not increase the overall cost even though optimality
is no longer guaranteed. Interestingly, in Rovers the situa-
tion is reversed: HSP∗F reports that the BRP problems are
unsolvable, even though LAMA solves them. We have no
good explanation for this but are curious to find out why.

In Satellite, BRP using HSP∗F again converges to an op-
timal solution with shorter makespan than the initial plan.
BRP using LAMA also converges and does not increase the
overall cost. The difference in makespan between the two
approaches is largely incidental: LAMA prefers the no-op
actions at the beginning of the plan, while HSP∗F prefers
them at the end. We could force planners to put no-op ac-
tions at the end by introducing two different no-op actions,
one of which has lower cost but can only be applied once the
agent is done with other actions. However, for ease of pre-
sentation we decided against such an approach in this paper.

The running time of BRP is not really comparable to that

of the DisCSP solver since they solve two fundamentally
different problems. However, the running time at least pro-
vides some indication of the relative complexity. In partic-
ular, the complexity of the DisCSP solver highly depends
on the number of public fluents of the problem. As a result,
it is quite efficient in Rovers and Satellite, which are do-
mains with few public fluents. However, in Logistics, where
there is more interaction between agents in the form of pack-
ages, the solver does not scale to problems with a number of
agents and packages larger than a handful.

On the other hand, the complexity of BRP is not directly
dependent on the number of public fluents. Instead, the com-
plexity of optimal planning largely depends on the branching
factor and the plan horizon. In Logistics, which has a fairly
small branching factor, BRP is relatively fast. In Rovers and
Satellite, the branching factor is larger, making it slower to
solve the associated BRP problems optimally.

Conclusions
We have introduced best-response planning as a method
for planning and plan improvement in multiagent planning
problems with full concurrency. We suggested a transforma-
tion of the original MAP that allows individual agents to im-
prove their local “response” to the behaviour of other agents
in a current plan using off-the-shelf (single-agent) planners.

For planning problems that correspond to (a relaxed ver-
sion of) congestion games, and for which local best-response
search is known to converge to a Nash equilibrium, we were
able to show that best-response planning allows the com-
putation of equilibrium plans in multiagent domains that
are clearly too large to be tackled with other existing MAP
methods in a centralised and fully cooperative – let alone
strategic i.e. incentive-compatible – way.

Since interaction between agents in these congestion plan-
ning problems is limited to effects on the cost incurred to
each participating agent, congestion planning problems do
not model domains in which an agent either needs other
agents’ actions to be able to achieve her goal, or domains in
which certain individual actions can make the future execu-
tion of others’ actions impossible. To assess the usefulness
of the best-response planning in these cases, we tested it us-
ing optimal and satisficing planners in multiagent planning
problems derived from IPC domains. Here, we saw that a
few best-response iterations usually suffice to improve the
initial plan computed by existing distributed planning meth-
ods when there is room for such improvement.

An advantage of our algorithm is that we need not make
any assumptions as to how to the initial plan is computed
in a multiagent system in terms of computational distribu-
tion. The agents could perform their own planning steps
asynchronously and exchange information periodically us-
ing some mutual notification protocol, or they could rely
on a central planning agent who executes the algorithm for
all agents iteratively until convergence is achieved, or for a
fixed number of iterations. This gives us a lot of flexibility
regarding potential uses of our algorithm in multiagent sys-
tems. Further, as we only use standard planning technology,
the performance of our algorithm will directly benefit from
any future advances in the area of cost-optimal planning.

DisCSP BRP-Optimal BRP-Satisficing
Problem Time Cost MS Time Iterations Cost MS Time Iterations Cost MS
Logistics 3 1 1.3 10 9 0.2 1 10 9 - - - -
Logistics 4 2 307.0 14 12 0.6 3 14 6 - - - -
Logistics 6 2* 126.7 20 20 5.3 3 20 9 - - - -

Rovers 3 53.0 33 13 - - - - 560.2 2 33 13
Rovers 4 408.4 44 14 - - - - 936.6 2 44 14
Rovers 5 784.2 55 15 - - - - 2170.7 3 55 15
Rovers 6 3958.7 66 16 - - - - 2235.2 2 66 16

Satellite 2 0.5 7 4 0.2 2 7 4 0.8 2 7 4
Satellite 4 1.2 14 6 1.5 2 14 4 5.7 3 14 6
Satellite 6 3.4 21 8 19.4 2 21 4 13.5 2 21 8
Satellite 8 25.5 28 10 178.0 2 28 4 37.6 2 28 10

Table 3: Results of running BRP in the three IPC domains.

In the future, we would like to develop criteria for de-
termining when a planning problem represents a conges-
tion game, to investigate practical convergence properties
of best-response planning across many more typical plan-
ning domains, and to assess the impact of using satisficing
planners instead of optimal planners in this setting. Another
question that requires further investigation is the quality of
the equilibria computed, how it depends on the initial plan
and on the order in which the BRP steps are performed when
iterating over agents, and how overall system performance
evolves across BRP steps in which agents effectively only
greedily decrease their own cost. Finally, we would like
to investigate the viability of using BRP or some variant
thereof to come up with initial plans. This is challenging
both in terms of individual agents solving part of the prob-
lem on their own, and synchronizing the plans of individual
agents to make sure the resulting joint plan is coherent.

Acknowledgments
This work was partially supported by APIDIS and TIN2009-
10232, MICINN, Spain. The authors also thank Raz Nissim
for providing the source code of the DisCSP planner.

References
Boutilier, C., and Brafman, R. I. 2001. Partial-order planning with
concurrent interacting actions. Journal of Artificial Intelligence
Research 14: 105–136.
Bowling, M., and Veloso, M. 2003. Simultaneous adversarial
multi-robot learning. In Procs IJCAI 2003, 699–704.
Brafman, R. I., and Domshlak, C. 2008. From One to Many: Plan-
ning for Loosely Coupled Multi-Agent Systems. In Procs ICAPS
2008, 28–35. AAAI Press.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2009. Planning Games. In Procs IJCAI 2009, 73–78.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2010. Transferable Utility Planning Games. In Procs AAAI 2010.
AAAI Press.
Cox, J. S., and Durfee, E. H. 2005. An efficient algorithm for
multiagent plan coordination. In Procs AAMAS 2005, 828–835.
ACM.

Cox, J. S.; Durfee, E. H.; and Bartold, T. 2005. A distributed
framework for solving the multiagent plan coordination problem.
In Procs AAMAS 2005, 821–827. ACM.
Dimopoulos, Y., and Moraitis, P. 2006. Multi-agent Coordination
and Cooperation through Classical Planning. In Procs IAT 2006,
398–402. IEEE Computer Society.
Durfee, E., and Lesser, V. 1991. Partial global planning:
A coordination framework for distributed hypothesis formation.
IEEE Transactions on Systems, Man, and Cybernetics SMC-21(5):
1167–1183.
Durfee, E. H.; Lesser, V. R.; and Corkill, D. D. 1985. Increas-
ing coherence in a distributed problem-solving network. In Procs
IJCAI 1985, 1025–1030.
Durfee, E. H. 1999. Distributed Problem Solving and Planning. In
Weiß, G., ed., Multiagent Systems, 121–164.
Ephrati, E., and Rosenschein, J. S. 1994. Multi-agent planning as
search for a consensus that maximizes social welfare. In Castel-
franchi, C., and Werner, E., eds., Artificial Social Systems, number
830 in Lecture Notes in Artificial Intelligence, 207–226. Springer-
Verlag.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for complex
group action. Artificial Intelligence 86(2): 269–357.
Haslum, P. 2008. Additive and reversed relaxed reachability heuris-
tics revisited. IPC 2008 Competition Booklet, ICAPS-08.
Larbi, R. B.; Konieczny, S.; and Marquis, P. 2007. Extending
Classical Planning to the Multi-agent Case: A Game-Theoretic Ap-
proach. In Procs ECSQARU’07, volume 4724 of Lecture Notes in
Artificial Intelligence, 731–742. Springer-Verlag.
Monderer, D., and Shapley, L. S. 1996. Potential Games. Games
and Economic Behaviour 14(1): 124–143.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A general,
fully distributed multi-agent planning algorithm. In Procs AAMAS
2010, 1323–1330. IFAAMAS.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. Journal of Artifi-
cial Intelligence Research 39: 127–177.
Rosenthal, R. W. 1973. A class of games possessing pure-strategy
Nash equilibria. International Journal of Game Theory 2: 65–67.
Witteveen, C.; Roos, N.; van der Krogt, R.; and de Weerdt, M.
2005. Diagnosis of single and multi-agent plans. In Procs AAMAS
2005, 805–812. ACM.

