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08003 Barcelona, Spain
anders.jonsson@upf.edu

Abstract

We present three new complexity results for classes of plan-
ning problems with simple causal graphs. First, we describe a
polynomial time algorithm that uses macros to generate plans
for a class of planning problems with binary state variables
and acyclic causal graphs. This implies that plan generation
may not be intractable just because a planning problem has
exponential length solution. We also prove that the problem
of plan existence for planning problems with multi-valued
variables and chain causal graphs is NP-hard. Finally, we
show that plan existence for planning problems with binary
state variables and polytree causal graphs is NP-complete.

Introduction
Planning in artificial intelligence is the problem of obtaining
a sequence of transformations for moving a system from an
initial state to a goal state. Researchers usually distinguish
between plan generation, the problem of generating such a
sequence, and plan existence, the problem of determining
whether such a sequence exists. If the original STRIPS for-
malism is used, plan existence is undecidable in the first-
order case (Chapman 1987) and PSPACE-complete in the
propositional case (Bylander 1994). However, it is widely
known that many real-life problems exhibit structure that
can be exploited to solve these problems more efficiently.

One of the most fruitful tools that researchers have used to
characterize structure in planning problems is the so called
causal graph (Knoblock 1994). The causal graph of a plan-
ning problem is a graph that captures the degree of in-
terdependence among the state variables of the problem.
The causal graph has been used both as a tool for describ-
ing tractable subclasses of planning problems (Brafman &
Domshlak 2003; 2006; Williams & Nayak 1997) and as
the basis for domain-independent heuristics that guide the
search for a valid plan (Helmert 2006).

In the present work we explore the computational com-
plexity of solving planning problems with simple causal
graphs. We present new results for three classes of plan-
ning problems studied in the literature: the class 3S (Jons-
son & Bäckström 1998), the class Cn (Domshlak & Dinitz
2001), and the class of planning problems with polytree
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causal graphs (Brafman & Domshlak 2003). In brief, we
show that plan generation for instances of the first class can
be solved in polynomial time using macros, but that we can-
not hope to solve plan existence in polynomial time for the
remaining two classes, unless P = NP.

The class 3S was conceived to show that tractable plan
existence does not always imply tractable plan generation.
Jonsson and Bäckström (1998) described a polynomial time
algorithm for determining whether or not a valid plan exists
for instances of 3S. On the other hand, there are instances
of 3S with optimal solutions that are exponential in the size
of the input. This result is sometimes interpreted as being
stronger than, say, being NP-hard, since it is not known
whether problems in NP are intractable, but it is certain that
we cannot generate exponential length output in polynomial
time. To improve on this result, Jonsson and Bäckström
(1998) showed that it is possible to generate valid plans in
polynomial time in the size of the output.

However, it is not clear if plan generation is inherently
hard, or if the difficulty just lies in the fact that plans may be
very long. Consider the two functional problems

f1(n) = w(1, 2n),

f2(F ) = w(t(F ), 2|F |),

where n is a natural number, F is a 3-CNF formula, |F | is
the number of clauses of F , w(σ, k) is a word containing k
copies of the symbol σ, and t(F ) is 1 if F is satisfiable (i.e.,
F is in 3-SAT), and 0 if it is not. In both cases, the problem
consists in generating the correct word. Observe that both f1

and f2 are provably intractable, since their output is at least
exponential in the size of the input, and that both can be
solved in polynomial time in the size of the output. Hence,
on first sight, they appear to have the same hardness as plan
generation for instances of 3S.

Nevertheless, it is intuitive to regard problem f1 as eas-
ier than problem f2, even when, in fact, the output of f1 is
doubly exponential in the bit size of the input. One way to
formalize this intuition is to allow programs to produce the
output in some succinct notation. For instance, if we allow
programs to write “w(σ, k)” instead of a string containing k
copies of the symbol σ, and “exp(2, n)” instead of the bit
representation of 2n, then problem f1 becomes polynomial,
but problem f2 does not (unless P = NP).



We wanted to investigate the following question: regard-
ing plan generation for 3S, is the source of intractability that
solution plans are long, like f1, or that the problem is in-
trinsically hard, like f2? The answer is that plan generation
for 3S can be solved in polynomial time, provided that one
is allowed to give the solution in terms of macros, where a
macro is a simple substitution scheme: a sequence of opera-
tors and/or other macros. To back up this claim, we present
an algorithm that solves plan generation for 3S in polyno-
mial time.

The idea of using macros in planning is almost as old
as planning itself (Fikes & Nilsson 1971). Minton (1985)
and Korf (1987) were among the first to successfully ap-
ply macros to planning. Recent successful approaches in-
clude those of Vidal (2004) and Botea et al. (2005). Jonsson
(2007) described an algorithm that uses macros to gener-
ate plans for planning problems with tree-reducible causal
graphs. There exist planning problems for which the algo-
rithm can generate exponentially long solutions in polyno-
mial time, just like our algorithm for 3S. Unlike ours, the al-
gorithm can handle multi-valued variables, but not all plan-
ning problems in 3S have tree-reducible causal graphs.

Other researchers have argued intractability using the fact
that plans may have exponential length. Domshlak and
Dinitz (2001) proved complexity results for several classes
of planning problems with multi-valued state variables and
simple causal graphs. They argued that the class Cn of plan-
ning problems with chain causal graphs is intractable since
plans may have exponential length. Brafman and Domsh-
lak (2003) stated that plan existence for STRIPS planning
problems with unary operators and acyclic causal graphs is
intractable using the same reasoning. Our new result puts in
question the actual hardness of these problems.

In the remaining sections of the paper, we investigate the
complexity of the class Cn of planning problems with multi-
valued state variables and chain causal graphs. In other
words, the causal graph is just a directed path. Even if in-
stances of this class may have exponential length solutions,
it is possible that the instances are inherently easy to solve,
as is the case for 3S. However, even for this restricted class
of problems, we show that the problem of plan existence is
NP-hard.

We also show that plan existence for planning problems
whose causal graph is a polytree (i.e., the underlying undi-
rected graph is acyclic) is NP-complete, even if we re-
strict to problems with binary variables. This result closes
the complexity gap that appears in Brafman and Domshlak
(2003), where it is shown that plan existence is NP-complete
for planning problems with singly connected causal graphs,
and that plan generation is polynomial for planning prob-
lems with polytree causal graphs of bounded indegree.

Notation
Let V be a set of state variables, and let D(v) be the finite
domain of state variable v ∈ V . We define a state s as a
function on V that maps each state variable v ∈ V to a value
s(v) ∈ D(v) in its domain. A partial state p is a function
on a subset Vp ⊆ V of state variables that maps each state
variable v ∈ Vp to p(v) ∈ D(v). For a subset C ⊂ V of state

variables, p | C is the partial state obtained by restricting
the domain of p to Vp ∩ C. Sometimes we use the notation
(v1 = x1, . . . , vk = xk) to denote a partial state p defined
by Vp = {v1, . . . , vk} and p(vi) = xi for each vi ∈ Vp.

A planning problem is a tuple P = 〈V, init, goal, A〉,
where V is the set of variables, init is an initial state, goal
is a partial goal state, and A is a set of operators. An operator
a = 〈pre(a); post(a)〉 ∈ A consists of a partial state pre(a)
called the pre-condition and a partial state post(a) called the
post-condition. Operator a is applicable in any state s such
that s | Vpre(a) = pre(a), and applying operator a in state
s results in a new state s′ such that s′(v) = post(a)(v) for
each v ∈ Vpost(a) and s′(v) = s(v) otherwise.

The causal graph of a planning problem P is a graph
(V,E) with state variables as nodes. There is an edge
(u, v) ∈ E if and only if there exists an operator a ∈ A
such that u ∈ Vpre(a) ∪ Vpost(a) and v ∈ Vpost(a). We de-
fine a macro m as an operator augmented with an operator
sequence. In other words, m has a pre-condition pre(m)
and a post-condition post(m), as well as an associated op-
erator sequence op(m) composed of either operators in A or
other macros. For a valid macro m, the operator sequence
op(m) is applicable in pre(m) and results in the partial state
post(m) when executed. However, op(m) may very well be
applicable in states that do not coincide with pre(m).

3S
Jonsson and Bäckström (1998) introduced the 3S class of
planning problems with binary state variables and acyclic
causal graphs. In addition to these restrictions, state vari-
ables belong to one of three categories that we describe be-
low. Since state variables are binary, the domain of each
state variable v ∈ V is D(v) = {0, 1}. The fact that the
causal graph is acyclic implies that operators are unary, i.e.,
for each operator a ∈ A, |Vpost(a)| = 1. Also, for each
state variable v, we can form the subset Anc(v) ⊂ V of the
ancestors of v in the causal graph.

For each state variable v ∈ V , let Av
1 be the subset of

operators whose pre-condition specifies v = 1, i.e., Av
1 =

{a ∈ A | v ∈ Vpre(a) ∧ pre(a)(v) = 1}. Let Qv
1 be the set

of state variables in the post-condition of operators in Av
1 ,

i.e., Qv
1 = {u | ∃a ∈ Av

1 s.t. Vpost(a) = {u}}. Let (V,Ev
1 )

be the subgraph of (V,E) whose edges exclude operators in
Av

1 , i.e., Ev
1 = {(u,w) | ∃a ∈ A − Av

1 s.t. u ∈ Vpre(a) ∧
w ∈ Vpost(a)}. Let V v

1 be the set of state variables w such
that there is an undirected path from any state variable u in
Qv

1 to w in the subgraph (V,Ev
1 ). Define V v

0 in the same
way for v = 0.

For planning problems in the 3S class, each state variable
v ∈ V belongs to one of the following three categories:

1. static: the value of v must not or cannot change,

2. symmetrically reversible: for each operator a ∈ A such
that Vpost(a) = {v}, there exists a symmetric operator
a′ ∈ A such that Vpre(a′) = Vpre(a), Vpost(a′) = {v},
post(a′)(v) = pre(a)(v), pre(a′)(v) = post(a)(v), and
pre(a′) | Anc(v) = pre(a) | Anc(v),



v1 v2

v3

v4

v5

v6
v7

v8

Figure 1: Causal graph of a planning problem in 3S

3. splitting: v is not static, not reversible, and the two sets
V v

1 and V v
0 are disjoint.

Inclusion in each category can be checked in polynomial
time; we refer to Jonsson and Bäckström (1998) for de-
tails. We illustrate the 3S class using an example planning
problem. The set of state variables is V = {v1, . . . , v8}
where v1 is static, v2 and v8 are splitting, and v3–v7 are
symmetrically reversible. The initial state is defined by
init(vi) = 0 for each vi ∈ V and the goal state is defined
by goal = (v4 = 1, v5 = 1, v8 = 1). Figure 1 shows the
causal graph (V,E) of the planning problem.

For each vi ∈ {v3, v4, v5, v7, v8} there is an operator
ai = 〈vj = 1, vi = 0; vi = 1〉, where vj is the parent
of vi in the causal graph. For each vi ∈ {v2, v6} there
is an operator ai = 〈vj = 0, vi = 0; vi = 1〉. Since
v3–v7 are symmetrically reversible, there is a corresponding
symmetric operator a′i for each of these state variables. For
splitting state variable v2, Qv2

1 = {v3}, the graph (V,Ev2
1 )

excludes the edge (v2, v3), and V v2
1 = {v3, v4, v5}. Like-

wise, V v2
0 = {v6, v7, v8}. For splitting state variable v8,

V v8
1 = V v8

0 = ∅.

Algorithm
We present a polynomial time algorithm for plan generation
in 3S. The idea is to construct macros that change the value
of a single state variable. The macros may change the values
of other state variables during execution, but always reset
them before terminating. Once the macros have been gener-
ated, the goal can be achieved one state variable at a time.
We show that the algorithm generates a valid plan if and
only if one exists. The solution is a sequence of macros that
completely describe the steps needed to achieve the goal.

First, perform a topological sort of the state variables,
which is possible since the causal graph is acyclic. During
this process, take special care of each splitting state variable
v. Since V v

1 and V v
0 are disjoint, state variables in one set

are independent of state variables in the other, so their mu-
tual order in the topological sort can be arbitrarily selected.
If init(v) = 1, order all state variables in V v

0 before state
variables in V v

1 in the topological sort. If init(v) = 0, order
V v

1 before V v
0 .

For each state variable v, the algorithm maintains a start
state startv, initially equal to the initial state. The role of the
start state is to detect possible changes in the values of split-
ting state variables, which is later used to determine whether

it is possible to satisfy the pre-condition of some operators.
The algorithm generates macros for each state variable v in
topological order. Depending on the category to which v
belongs, perform one of the following steps:

1. If v is static, do nothing.

2. If v is symmetrically reversible, attempt to generate
a macro mv

0 such that Vpre(mv
0) = Anc(v) ∪ {v},

Vpost(mv
0) = {v}, pre(mv

0)(u) = startv(u) for each
u ∈ Anc(v), pre(mv

0)(v) = 0, and post(mv
0)(v) = 1. If

this is possible, also generate a symmetric macro mv
1 with

pre(mv
1) | Anc(v) = pre(mv

0) | Anc(v), pre(mv
1)(v) =

1, and post(mv
1)(v) = 0.

3. If v is splitting, attempt to generate the macro mv
init(v) in

the same way as for symmetrically reversible state vari-
ables. In other words, if init(v) = 0, generate the macro
mv

0 , otherwise generate mv
1 . In case init(v) = 0 and mv

0
is successfully generated, modify the start state of each
state variable u ∈ V v

1 to be startu(v) = 1. In case
init(v) = 1 and mv

1 is generated, modify the start state of
each u ∈ V v

0 to be startu(v) = 0.

To generate the macro mv
init(v) for state variable v, go

through each operator a ∈ A such that Vpost(a) = {v},
pre(a)(v) = init(v), and post(a)(v) 6= init(v). At-
tempt to satisfy the pre-condition pre(a) of a. Let Z(a) =
{u1, . . . , uk} ⊆ Anc(v) be the set of ancestors of v such
that startv(ui) 6= pre(a)(ui), preserving their topologi-
cal order. In other words, Z(a) is the set of state variables
whose values need to be changed to satisfy pre(a). It is
possible to satisfy pre(a) if and only if each state variable
ui ∈ Z(a) is symmetrically reversible and it was possible
to generate the macros mui

0 and mui
1 (if ui is splitting the

value of startv(ui) would have been altered as a result of
generating a macro for ui). Since each ui is symmetrically
reversible, it follows that startv(ui) = init(ui).

Note that the net result of executing a macro is changing
the value of a single state variable, even though the values
of other state variables may change during the course of its
execution. In particular, the macro muk

init(uk) changes the
value of state variable uk from init(uk) to pre(a)(uk), leav-
ing the values of u1, . . . , uk−1 unchanged. Since uk comes
after u1, . . . , uk−1 in the topological sort, it cannot be an
ancestor of any of these state variables. Consequently, exe-
cuting muk

init(uk) does not interfere with the pre-condition of
the macros that were generated for these state variables.

It is easy to show that the sequence of macros S1 =
〈muk

init(uk), . . . ,m
u1

init(u1)
〉 changes the values of state vari-

ables in Z(a) from init to pre(a). Conversely, the sequence
S2 = 〈mu1

pre(a)(u1)
, . . . ,muk

pre(a)(uk)〉 changes the values of
state variables in Z(a) back to init. A valid operator se-
quence of mv

init(v) is op(mv
init(v)) = 〈S1, a, S2〉. If v is

symmetrically reversible, there exists an operator a′ such
that Vpost(a′) = {v}, pre(a′)(v) 6= init(v), post(a′)(v) =
init(v), and pre(a′) | Anc(v) = pre(a) | Anc(v). If it is
possible to generate mv

init(v), it is always possible to gener-
ate a symmetric macro with operator sequence 〈S1, a

′, S2〉.
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Figure 2: Causal graph of the planning problem P5

To generate the final plan, go through the state variables
in reverse topological order. For each state variable v, if v ∈
Vgoal and goal(v) 6= init(v), append the macro mv

init(v) to
the current plan. Recall that this macro does not interfere
with the values of the ancestors of v. Consequently, the pre-
conditions of macros that change the values of the ancestors
are preserved. If the macro mv

init(v) was not generated, there
exists no valid plan. For a splitting state variable v, if a
macro was generated, the macro needs to be inserted in the
plan between V v

0 and V v
1 in the appropriate place.

Examples
We illustrate the algorithm on the planning problem from the
previous section. For splitting state variable v2, init(v2) =
0, V v2

1 = {v3, v4, v5}, and V v2
0 = {v6, v7, v8}. The al-

gorithm orders V v2
1 before V v2

0 , so v1, . . . , v8 is a valid
topological sort of the state variables. State variable v1

is static so the algorithm does nothing. Operator a2 sat-
isfies pre(a2)(v2) = 0 = init(v2) and post(a2)(v2) =
1 6= init(v2). Since pre(a2)(v1) = 0 and startv2(v1) =
init(v1) = 0, Z(a2) is empty, so the algorithm generates
the macro mv2

0 with operator sequence op(mv2
0 ) = 〈a2〉. In

addition, the start state of each state variable vi ∈ V v2
1 is

modified to be startvi(v2) = 1.
The algorithm proceeds to generate macros mvi

0 for
each v3–v8 and mvi

1 for each v3–v7. The operator se-
quences of macros mvi

0 are op(mv3
0 ) = 〈a3〉, op(mv4

0 ) =
〈mv3

0 , a4,m
v3
1 〉, op(mv5

0 ) = 〈mv3
0 , a5,m

v3
1 〉, op(mv6

0 ) =
〈a6〉, op(mv7

0 ) = 〈mv6
0 , a7,m

v6
1 〉, and op(mv8

0 ) =
〈mv6

0 , a8,m
v6
1 〉. To generate the final plan, the algo-

rithm achieves the goal state of state variables in reverse
topological order. This results in the macro sequence
〈mv8

0 ,mv5
0 ,mv4

0 〉. However, since the macro mv2
0 was gener-

ated, it needs to be inserted between V v2
1 and V v2

0 , resulting
in the final plan 〈mv8

0 ,mv2
0 ,mv5

0 ,mv4
0 〉. This is equivalent to

the operator sequence 〈a6, a8, a
′
6, a2, a3, a5, a

′
3, a3, a4, a

′
3〉.

This plan is not optimal; an example of an optimal plan is
〈a6, a8, a2, a3, a5, a4〉.

The following example was introduced by Jonsson and
Bäckström (1998) to show that there are instances of 3S
with exponentially sized minimal solutions. Let Pn =
〈V, init, goal, A〉 be the planning problem, where n is a nat-
ural number and V = {v1, . . . , vn}. Let the initial state be
defined by init(vi) = 0 for each state variable vi ∈ V , and
let the goal state be defined by Vgoal = V , goal(vi) = 0 for
each vi ∈ {v1, . . . , vn−1}, and goal(vn) = 1.

For each state variable vi, there are two operators, ai =
〈v1 = 0, . . . , vi−2 = 0, vi−1 = 1, vi = 0; vi = 1〉 and a′i =
〈v1 = 0, . . . , vi−2 = 0, vi−1 = 1, vi = 1; vi = 0〉. In other
words, each state variable is symmetrically reversible. To
change the value of vi it is necessary to set vi−1 to 1 and the

remaining ancestors to 0. The causal graph of the planning
problem P5 is shown in Figure 2. Bäckström and Nebel
(1995) showed that the length of the shortest plan solving Pn

is 2n − 1, i.e., exponential in the number of state variables.
For each state variable vi, our algorithm generates two

macros mvi
0 and mvi

1 . Since each state variable is symmet-
rically reversible, the start state of vi is equal to the initial
state. There is a single operator, ai, that changes the value
of vi from 0 to 1. The only state variable whose value
in init differs from that in pre(ai) is vi−1, so Z(ai) =
{vi−1}. Thus, the operator sequence of mvi

0 is op(mvi
0 ) =

〈mvi−1

0 , ai,m
vi−1

1 〉. Similarly, the operator sequence of mvi
1

is op(mvi
1 ) = 〈mvi−1

0 , a′i,m
vi−1

1 〉.
To generate the final plan, the algorithm appends macros

for state variables whose value in the goal state differs from
that in the initial state. There is a single such state variable,
vn, so the solution simply consists of the sequence 〈mvn

0 〉.
The operator sequence of the macro mvn

0 consists of the se-
quence 〈mvn−1

0 , an,m
vn−1

1 〉. If we continue to expand these
macros, we end up with a sequence of 2n − 1 operators.
However, no individual macro has operator sequence length
greater than 3. Together, the macros recursively specify a
complete solution to the planning problem.

Completeness and Complexity
In this section we prove that our algorithm is sound and com-
plete, i.e., it generates a valid plan if and only if one exists.
In addition, we prove that the algorithm runs in polynomial
time.

Lemma 1 The algorithm generates the macro mv
init(v) for

state variable v if and only if there exists an operator se-
quence that starts in init and changes the value of v.

Proof By induction on state variables v. If |Anc(v)| = 0,
there exists an operator sequence that starts in init and
changes the value of v if and only if there exists an operator
a such that pre(a)(v) = init(v) and post(a)(v) 6= init(v).
In this case, the algorithm generates the macro mv

init(v) with
op(mv

init(v)) = 〈a〉. Otherwise, mv
init(v) is not generated.

If |Anc(v)| > 0, there exists an operator sequence that
starts in init and changes the value of v if and only if
there exists an operator a such that pre(a)(v) = init(v),
post(a)(v) 6= init(v), and it is possible to satisfy the pre-
condition pre(a) of a. If no such operator exists, mv

init(v) is
not generated. Otherwise, it is possible to change the value
of each state variable in the set Z(a) = {u | u ∈ Vpre(a) ∧
init(u) 6= pre(a)(u)}. By hypothesis of induction, the al-
gorithm generates the macro mu

init(u) for each u ∈ Z(a).
If u is splitting, the algorithm changes the start state

of v such that startv(u) = pre(a)(u). Let u1, . . . , uk

be the remaining state variables in Z(a), preserving their
topological order. These state variables have to be sym-
metrically reversible, so in addition to mui

init(ui)
, the al-

gorithm also generates the symmetric macro mui

pre(a)(ui)

for each ui. Consequently, the algorithm generates the
macro mv

init(v) with operator sequence op(mv
init(v)) =



〈S1, a, S2〉, where S1 = 〈muk

init(uk), . . . ,m
u1

init(u1)
〉 and

S2 = 〈mu1

pre(a)(u1)
, . . . ,muk

pre(a)(uk)〉.
Theorem 2 The proposed algorithm generates a valid plan
for planning problems in 3S if and only if one exists.

Proof It should be clear from the description of the algo-
rithm that each macro generated by the algorithm is valid.
It remains to be shown that the final plan generated by
the algorithm is valid. For each state variable v such that
v ∈ Vgoal and goal(v) 6= init(v), it follows from Lemma
1 that the algorithm generates a macro mv

init(v) if and only
if there exists an operator sequence that starts in init and
changes the value of v. If this is not the case, no valid plan
exists, and the algorithm does not generate a final plan.

Note that the macro mv
init(v) only changes the value of

v, leaving the values of all other state variables unchanged.
In particular, this preserves the pre-condition of the macro
mu

init(u) of each state variable u that precedes v in the topo-
logical sort. Thus, we can apply macros to change the values
of state variables in inverse topological order. Since some
macros assume that the value of a splitting state variable v is
different from that in the initial state, it is necessary to insert
the macro that changes the value of v in the correct place in
the plan. This is the procedure followed by the algorithm.

Applying a macro that changes the value of a splitting
state variable v never invalidates the plan. From the defi-
nition of splitting it follows that v is neither static nor re-
versible. In other words, it is possible to change the value of
v once from its initial value (otherwise v would be static) but
it is not possible to change the value of v back to its initial
value (otherwise v would be reversible).

Theorem 3 The above algorithm for plan generation in 3S
runs in polynomial time with complexity O(|V |2 + |V ||A|).
Proof For each state variable v, the algorithm performs one
of the steps 1-3 above. If v is static, the algorithm does noth-
ing. If v is symmetrically reversible, the algorithm attempts
to generate two macros. For each operator a that changes
the value of v, determining Z(a) and checking whether each
state variable in Z(a) is symmetrically reversible and has
the two required macros can be done in time linear in the
number of state variables in Anc(v). If a is applicable, the
resulting macro is composed of two macros for each state
variable in Z(a) plus a, which is also linear in |Anc(v)|.
Assuming v is the ith variable in the topological sort, v has
O(i) ancestors, so the complexity of this step is O(i|Ai|),
where Ai is the subset of operators that change the value of
v. If v is splitting, the algorithm generates a macro for v
in the same way as for symmetrically reversible state vari-
ables. In addition, the algorithm changes the start state of
some of its descendents. In the worst case, this is linear in
O(|V | − i), the number of descendents of v, so the com-
plexity of this step is O((|V | − i) + i|Ai|). The complex-
ity of assembling the final plan is O(|V |), since we just
need to go through the state variables once, and determin-
ing whether or not a required macro exists can be done in
constant time. In total, the complexity of the algorithm is
O(|V |+ ∑|V |

i=1[(|V | − i) + i|Ai|]) = O(|V |2 + |V ||A|).
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Figure 3: Domain transition graph for vi

Cn

Domshlak and Dinitz (2001) defined the class Cn of plan-
ning problems with multi-valued state variables and chain
causal graphs. Since chain causal graphs are acyclic, it fol-
lows that operators are unary. Moreover, let vi be the ith
state variable in the chain. If i > 1, for each operator a such
that Vpost(a) ⊆ {vi} it holds that Vpre(a) = {vi−1, vi}. In
other words, each operator that changes the value of a state
variable vi may only have pre-conditions on vi−1 and vi.

The authors showed that there are instance of Cn with
exponentially sized minimal solutions, and therefore argued
that the class is intractable. In light of the previous section,
this argument on the length of the solutions does not discard
the possibility that instances of the class can be solved in
polynomial time using macros. We show that this is not the
case, unless P = NP.

We define the decision problem PLAN-EXISTENCE-Cn

as follows. A valid input of PLAN-EXISTENCE-Cn is a
planning instance P of Cn. The input P belongs to PLAN-
EXISTENCE-Cn if and only if P is solvable. We show in this
section that the problem PLAN-EXISTENCE-Cn is NP-hard.
This implies that, unless P = NP, solving instances of Cn

is a truly intractable problem, namely, no polynomial time
algorithm can distinguish between solvable and unsolvable
instances of Cn. In particular, no polynomial time algorithm
can solve Cn instances by using macros or any other kind of
output format.1

We prove that PLAN-EXISTENCE-Cn is NP-hard by
a reduction from CNF-SAT, that is, the problem of de-
termining whether a CNF formula F is satisfiable. Let
C1, . . . , Cn be the clauses of the CNF formula F , and let
v1, . . . , vk be the variables that appear in these clauses.
Define a planning problem P (F ) = 〈V, init, goal, A〉 as
follows. The variable set V is {v1, . . . , vk, w}, where
D(vi) = {S, 0, 1, C1, C

′
1, . . . , Cn, C ′n} for each vi and

D(w) = {S, 1, . . . , n}. The initial state defines init(v) = S
for each v ∈ V and the goal state defines goal(w) = n.

The domain transition graph for each state variable vi is
shown in Figure 3. Each node represents a value in D(vi),
and an edge from x to y means that there exists an operator a
such that pre(a)(vi) = x and post(a)(vi) = y. Edge labels
represent the pre-condition of such operators on state vari-
able vi−1, and multiple labels indicate that several operators

1A valid output format is one that enables efficient distinction
between an output representing a valid plan and an output repre-
senting the fact that no solution was found.
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are associated with an edge. We enumerate the operators
acting on vi using the notation a = 〈pre(a); post(a)〉 (when
i = 1 any mention of vi−1 is understood to be void):

(1) Operators 〈vi−1 = S, vi = S; vi = 0〉 and 〈vi−1 = S,
vi = S; vi = 1〉 allow vi to move from S to either 0 or 1.

(2) Only when i > 1. For every clause Cj , four operators
〈vi−1 = X, vi = 0; vi = Cj〉 and 〈vi−1 = X, vi = 1;
vi = C ′j〉, where X ∈ {Cj , C

′
j}. These operators allow

vi to move to Cj or C ′j if vi−1 has done so.

(3) For every clause Cj , two operators 〈vi−1 = X, vi = 0;
vi = Cj〉 if vi occurs in clause Cj , and two operators
〈vi−1 = X, vi = 1; vi = C ′j〉 if vi occurs in clause Cj ,
where X ∈ {0, 1}. These operators allow vi to move to
Cj or C ′j even if vi−1 has not done so.

(4) For every clause Cj , four operators 〈vi−1 = X, vi = Cj ;
vi = 0〉 and 〈vi−1 = X, vi = C ′j ; vi = 1〉, where X =
{0, 1}. These operators allow vi to move back to 0 or 1.

The domain transition graph for state variable w is shown in
Figure 4. For every clause Cj the only two operators acting
on w are 〈vk = X,w = j−1;w = j〉, where X ∈ {Cj , C

′
j}.

(If j = 1, the pre-condition w = j − 1 must be replaced by
w = S.)
Proposition 4 A CNF formula F is satisfiable if and only if
the planning instance P (F ) is solvable.
Proof The proof follows from a relatively straightforward
interpretation of the variables and values of the planning in-
stance P (F ). For every state variable vi, we must initially
choose either 0 or 1. We can move a state variable vi to Cj

or C ′j if vi−1 has done so. However, state variable v1 cannot
move freely to Cj or C ′j , since variable v1 has no operators
of type (2). Hence, for every clause Cj , we are forced to
use an operator of type (3) to move some state variable vi to
Cj or C ′j ; once this has been done, the remaining variables
vi+1, . . . , vk can follow by using operators of type (2), and
we can make w advance one step towards its goal. Note that
the existence of an operator of type (3) acting on vi implies
that the initial choice of 0 or 1 for state variable vi, when ap-
plied to the formula variable vi, makes the clause Cj become
true in the formula F .
Theorem 5 PLAN-EXISTENCE-Cn is NP-hard.
Proof Producing a planning instance P (F ) from a CNF
formula F can be easily done in polynomial time, so we
have a polynomial time reduction CNF-SAT ≤p PLAN-
EXISTENCE-Cn.

Polytree Causal Graphs
In this section, we study the class of planning problems with
binary state variables and polytree causal graphs (Brafman
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Figure 5: Causal graph of PF when F = C1 ∧ C2 ∧ C3 on
three variables x, y, z.

& Domshlak 2003). We prove NP-hardness by demonstrat-
ing a reduction from 3SAT to this class of planning prob-
lems. As an example of the reduction, Figure 5 shows the
causal graph of the planning problem PF that corresponds
to a formula F with three variables and three clauses (the
precise definition of PF is given in Proposition 7).

Let us describe briefly the idea behind the reduction. The
planning problem PF has two different parts. The first part
(state variables vx, vx, . . . , vC1

, v′C1
, . . . , and v1) depends

on the formula F and has the property that a plan may
change the value of v1 from 0 to 1 as many times as the
number of clauses of F that a truth assignment can satisfy.
However, this condition on v1 cannot be stated as a planning
problem goal. We overcome this difficulty by introducing a
second part (state variables v1, v2, . . . , vt) that translates it
to a regular planning problem goal.

We first describe the second part. Let P be the plan-
ning problem 〈V, init, goal, A〉 where V is the set of state
variables {v1, . . . , v2k−1} and A is the set of 4k − 2 op-
erators {α1, . . . , α2k−1, β1, . . . , β2k−1}. For i = 1, the
operators are defined as α1 = 〈v1 = 1; v1 = 0〉 and
β1 = 〈v1 = 0; v1 = 1〉. For i > 1, the operators are αi =
〈vi−1 = 0, vi = 1; vi = 0〉 and βi = 〈vi−1 = 1, vi = 0;
vi = 1〉. The initial state is init(vi) = 0 for all i, and the
goal state is goal(vi) = 0 if i is even and goal(vi) = 1 if
odd.

Lemma 6 Any valid plan for planning problem P changes
state variable vi from 0 to 1 at least k times. There is a valid
plan that achieves this minimum.

Proof Let Ai and Bi be, respectively, the sequences of op-
erators 〈α1, . . . , αi〉 and 〈β1, . . . , βi〉. It is easy to verify that
the plan 〈B2k−1, A2k−2, B2k−3, . . . , B3, A2, B1〉 is valid:
after finishing a sequence of operators Ai or Bi, the variable
vi is in its goal state (0 if i is even, 1 if i is odd). Subsequent
operators in the plan do not modify vi, so the variable re-
mains in its goal state until the end. The operator β1 appears
k times in the plan (one for each sequence of type Bi), thus
the value of v1 changes k times from 0 to 1.

We proceed to show that k is the minimum. Consider a
valid plan π, and let λi be the number of times that opera-
tors αi and βi appear in π (in other words, λi is the number
of times that the value of vi changes, either from 0 to 1 or
from 1 to 0). Note that the number of occurrences of βi has



to be equal to or precisely one more than the number of oc-
currences of αi. We will show that λi−1 > λi. Since λ2k−1

has to be at least one, λi−1 > λi implies that λ1 ≥ 2k − 1.
In consequence, there are at least k operators βi in plan π,
finishing the proof.

We show that λi−1 > λi for valid plans. To begin with, let
π be any plan (not necessarily a valid one) and consider only
the subsequence consisting of operators αi and βi in π. It
starts with βi (since the initial state is vi = 0), and the same
operator cannot appear twice consecutively in the sequence.
Thus the sequence alternates between βi and αi. Moreover,
since βi (for i > 1) has vi−1 = 1 as a pre-condition, and
αi has vi−1 = 0, there must be at least one operator αi−1

in plan π betweeen the two operators βi and αi. For the
same reason we must have at least one operator βi−1 be-
tween the two operators αi and βi, and one operator βi−1

before the first operator βi. This shows that, in any plan π,
not necessarily valid, we have λi−1 ≥ λi. If, in addition, π
is valid, we require an extra operator: when vi changes its
value for the last time and attains its goal state, we have that
vi−1 = vi, so vi−1 is not in its goal state by parity. Hence a
valid plan must have an extra operator αi−1 or βi−1 after all
occurrences of αi and βi. Thus λi−1 > λi for valid plans.
Proposition 7 3SAT reduces to plan existence for planning
problems with binary variables and polytree causal graphs.
Proof Let F be a CNF formula with k clauses and n vari-
ables. We produce a planning problem PF with 2n+4k− 1
state variables and 2n + 14k − 3 operators. The planning
problem has two state variables vx and vx for every vari-
able x in F , two state variables vC and v′C for every clause
C in F , and 2k − 1 additional variables v1, . . . , v2k−1. All
variables are 0 in the initial state. The (partial) goal state is
defined by Vgoal = {v1, . . . , v2k−1}, goal(vi) = 0 when i
is even, and goal(vi) = 1 when i is odd, like in problem P
of Lemma 6. The operators are:

(1) Operators 〈vx = 0; vx = 1〉 and 〈vx = 0; vx = 1〉 for
every variable x of F .

(2) Operators 〈v′C = 0; v′C = 1〉, 〈v′C = 0, vC = 0; vC = 1〉
and 〈v′C = 1, vC = 1; vC = 0〉 for every clause C of F .

(3) Seven operators for every clause C, one for each par-
tial assignment that satisfies C. Without loss of gen-
erality, let x, y, and z be the three variables that ap-
pear in clause C. Then for each operator a among
these seven, Vpre(a) = {vx, vx, vy, vy, vz, vz, vC , v1},
Vpost(a) = {v1}, pre(a)(vC) = 1, pre(a)(v1) = 0, and
post(a)(v1) = 1. The pre-condition on state variables
vx, vx, vy, vy, vz, vz depends on the corresponding satis-
fying partial assignment. For example, the operator corre-
sponding to the partial assignment {x = 0, y = 0, z = 1}
of the clause C = x ∨ y ∨ z has the pre-condition
(vx = 0, vx = 1, vy = 0, vy = 1, vz = 1, vz = 0).

(4) An operator 〈(∀C, vC = 0), v1 = 1; v1 = 0〉.
(5) Operators αi = 〈vi−1 = 0, vi = 1; vi = 0〉 and βi =
〈vi−1 = 1, vi = 0; vi = 1〉 for 2 ≤ i ≤ 2k − 1 (the same
operators as in problem P except for α1 and β1).

We note some simple facts about problem PF . For any vari-
able x, state variables vx and vx in PF start at 0, and by

applying the operators in (1) they can change into 1 but not
back to 0. In particular, a plan π cannot reach both of the
partial states 〈vx = 1, vx = 0〉 and 〈vx = 0, vx = 1〉 during
the course of its execution.

Similarly, if C is a clause of F , state variable vC can
change from 0 to 1 and, by first changing v′C into 1, vC can
change back to 0. No further changes are possible, since no
operator brings back v′C to 0.

Now we interpret operators in (3) and (4), which are the
only operators that affect v1. To change v1 from 0 to 1 we
need to apply one of the operators in (3), thus we require
vC = 1 for a clause C. But the only way to bring back v1 to
0 is applying the operator in (4) which has as pre-condition
that vC = 0. We deduce that every time that v1 changes its
value from 0 to 1 and then back to 0 in plan π, at least one of
the k state variables vC is used up, in the sense that vC has
been brought from 0 to 1 and then back to 0, and cannot be
used again for the same purpose.

We show that F is in 3-SAT if and only if there is a valid
plan for problem PF . Let σ be a truth assignment that satis-
fies F . By Lemma 6 we can extend a plan π′ that switches
variable v1 from 0 to 1 at least k times to a plan π that sets all
variables vi to their goal values. Plan π′ starts by setting the
value of all state variables vx and vx to the corresponding
value of the truth assignment σ using the operators in (1).
Then, for each of the k state variables vC , we set vC = 1,
we apply the operator of (3) that corresponds to σ restricted
to the variables of clause C, and we change vC back to 0
so that we can apply the operator in (4). By repeating this
process for every clause C of F we are switching the state
variable v1 exactly k times from 0 to 1.

We show the converse, namely, that the existence of a
valid plan π in PF implies that F is satisfiable. By Lemma 6
the state variable v1 has to change from 0 to 1 at least k
times. This implies that k operators of (3), all of them cor-
responding to different clauses, have been used to move v1

from 0 to 1. Hence we can define a satisfying assigment σ
by setting σ(x) = 1 if the partial states {vx = 1, vx = 0}
appears during the execution of π, and σ(x) = 0 otherwise.

Theorem 8 Plan existence for planning problems with a
polytree causal graph is NP-complete.

Proof Due to Proposition 7 we only need to show that the
problem is in NP. But Brafman and Domshlak (2003)
showed that this holds in the more general setting of plan-
ning problems with causal graphs where each component
is singly connected. Their proof uses the non-trivial result
that solvable planning problems on binary variables with
a singly connected causal graph have plans of polynomial
length (the same is not true for non-binary variables, or un-
restricted causal graphs).

Conclusion
We have presented three new complexity results for planning
problems with simple causal graphs. First, we provided a
polynomial time algorithm that uses macros to generate so-
lution plans for the class 3S. Jonsson and Bäckström (1998)
showed that plan existence for 3S can be solved in polyno-
mial time, while plan generation is intractable in the sense



that solution plans may have exponential length. Our work
casts new light on this result: even when solution plans have
exponential length, it is possible to generate a representa-
tion of the solution in polynomial time. Thus, it appears as
if for the class 3S, plan generation is not inherently harder
than plan existence. We are not aware of any other work
that determines the relative complexity of plan existence and
plan generation, so the question of whether plan generation
is harder than plan existence remains unanswered.

Jonsson and Bäckström (1998) also showed that the
bounded plan existence problem (does there exist a solu-
tion plan of length at most k?) is NP-hard for the class 3S.
Consequently, optimal plan generation for 3S is NP-hard as
well; otherwise, bounded plan existence could be solved by
generating an optimal solution plan and checking whether
or not it is longer than k. As we have demonstrated, even
though our algorithm generates a solution plan in polyno-
mial time, it does not generate an optimal plan in general.

If all you want is execute a solution plan once, our algo-
rithm does not offer a great advantage over the incremental
algorithm of Jonsson and Bäckström (1998). Neither algo-
rithm is guaranteed to produce a polynomial length solution
if one exists, and may produce an exponential length solu-
tion instead. However, we believe that there are several ben-
efits of compiling a solution in the form of macros. First, the
solution plan can be generated and validated in polynomial
time, and the plan can be stored and reused using polynomial
memory. Also, the plan length can be calculated in polyno-
mial time using dynamic programming. Finally, during plan
execution, no additional work is required except retrieving
the next operator to execute from memory, whereas the in-
cremental approach performs a constant number of opera-
tions at each step.

Since they are relatively simple, the class Cn and the class
of planning problems with binary state variables and poly-
tree causal graphs could be seen as promising candidates for
proving the relative complexity of plan existence and plan
generation. However, we have shown that plan existence for
Cn is NP-hard, and that plan existence for planning prob-
lems with polytree causal graphs is NP-complete. Conse-
quently, these classes cannot be used to show that plan gen-
eration is harder than plan existence, since plan existence is
already difficult. Our work also closes the complexity gaps
that appear in the literature regarding these two classes.

It is however possible that there exist subsets of plan-
ning problems in these classes for which plan existence can
be solved in polynomial time. In fact, for polytree causal
graphs we know that this is the case, since Brafman and
Domshlak (2003) presented a polynomial time algorithm for
solving planning problems in this class, provided that the
indegree of nodes in the causal graph is bounded. Our re-
duction from 3SAT has a node in the causal graph, v1, with
unbounded indegree, which causes the problem of plan ex-
istence to be NP-complete. In the case of Cn, the state vari-
ables in our reduction has domains whose size depends on
the number of clauses of the corresponding CNF formula.
It would be interesting to investigate whether the problem
of plan existence for the class Cn is easier if the size of the
state variable domains is bounded by a constant.
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