
Mapping Conformant Planning into SAT
through Compilation and Projection

Héctor Palacios1 and Héctor Geffner2

1 Universitat Pompeu Fabra.
Paseo de Circunvalación, 8. Barcelona, Spain

hector.palacios@upf.edu
2 ICREA & Universitat Pompeu Fabra.

Paseo de Circunvalación, 8. Barcelona, Spain
hector.geffner@upf.edu

Abstract. Conformant planning is a variation of classical AI planning
where the initial state is partially known and actions can have non-
deterministic effects. While a classical plan must achieve the goal from
a given initial state using deterministic actions, a conformant plan must
achieve the goal in the presence of uncertainty in the initial state and
action effects. Conformant planning is computationally harder than clas-
sical planning, and unlike classical planning, cannot be reduced polyno-
mially to SAT (unless P = NP). Current SAT approaches to conformant
planning, such as those considered by Giunchiglia and colleagues, thus
follow a generate-and-test strategy: the models of the theory are gener-
ated one by one using a SAT solver (assuming a given planning horizon),
and from each such model, a candidate conformant plan is extracted
and tested for validity using another SAT call. This works well when
the theory has few candidate plans and models, but otherwise is too in-
efficient. In this paper we propose a different use of a SAT engine for
computing conformant plans where the existence of conformant plans
and their extraction is carried out by means of a single SAT call over
a transformed theory. This transformed theory is obtained by project-
ing the original theory over the action variables. This operation, while
intractable, can be done efficiently provided that the original theory is
compiled into d–DNNF (Darwiche 2000), a form akin to OBDDs (Bry-
ant 1992). The experiments that are reported show that the resulting
compile-project-sat planner is competitive with state-of-the-art op-
timal conformant planners and improves upon a planner recently repor-
ted at ICAPS-05.

1 Introduction

Conformant planning is a variation of classical AI planning where the initial
state is partially known and actions can have non-deterministic effects. While a
classical plan must achieve the goal from a given initial state using deterministic
actions, a conformant plan must achieve the goal in the presence of uncertainty
in the initial state and action effects. Conformant planning is computationally
harder than classical planning, and unlike classical planning, cannot be reduced
polynomially to SAT. Current SAT approaches to conformant planning thus

follow a generate-and-test strategy [1]: the models of the theory are generated
one by one using a SAT solver (assuming a given planning horizon), and from
each such model, a candidate conformant plan is extracted and tested for validity
using another SAT call. This works well when the theory has few candidate plans
and models, but otherwise is too inefficient. In this paper we propose a different
use of a SAT engine for computing conformant plans where the existence of
conformant plans and their extraction is carried out by means of a single SAT
call over a transformed theory. This transformed theory is obtained by projecting
the original theory over the action variables. Projection is the dual of variable
elimination (also called forgetting or existential quantification): the projection
of a formula over a subset of its variables is the strongest formula over those
variables; e.g., the projection of ((x∧y)∨z) over {x, z} is x∨z. While projection
is intractable, it can be done efficiently provided that the theory is in a certain
canonical form such as deterministic Decomposable Negated Normal Form or
d–DNNF [2], a form akin to OBDDs [3].

Our scheme for planning is thus based on the following three steps: the plan-
ning theory in CNF is first compiled into d-DNNF, the compiled theory is then
transformed into a new theory over the action variables only, and finally the con-
formant plan, if there is one, is obtained from this theory by a single invocation
of a SAT engine. The experiments that are reported show that this compile-
project-sat planner is competitive with state-of-the-art optimal conformant
planners and improves upon a planner recently reported at ICAPS-05 [4].

Two recent optimal conformant planners are Rintanen’s [5] and Palacios et
al.’s [4]. The first performs heuristic search in belief space with a powerful, ad-
missible heuristic obtained by precomputing distances over belief states with at
most two states. The second is a branch-and-prune planner that prunes partial
plans that cannot comply with some possible initial state. This is achieved by
performing model-count operations in linear-time over the d–DNNF represent-
ation of the theory. Both schemes assume that all uncertainty lies in the initial
situation and that all actions are deterministic. In this work, we maintain this
simplification which is not critical as non-deterministic effects can be elimin-
ated by adding a polynomial number of hidden fluents. An appealing feature of
the new conformant planning scheme is that it is based on the two off-the-shelf
components: a d–DNNF compiler and a SAT solver.

The paper is organized as follows. First we define the conformant planning
problem and its formulation in propositional logic. Then we study how to obtain
models corresponding to conformant plans. We look then at projection as a
logical operation, and at d–DNNFs as a compiled normal form that supports
projection in linear time. Finally, we present the complete conformant planning
scheme, the experimental results, and some conclusions.

2 Planning and Propositional Logic

Classical planning consists of finding a sequence of actions that transforms a
known initial state into a goal, given a description of states and actions in terms

of a set of variables. Conformant planning is a variation of classical planning
where the initial state is partially known and actions can have non-deterministic
effects. A conformant plan must achieve the goal for any possible initial state
and transition.

We consider a language for describing conformant planning problems P given
by tuples of the form 〈F,O, I, G〉 where F stands for the fluent symbols f in
the problem, O stands for a set of actions a, and I and G are sets of clauses
over the fluents in F encoding the initial and goal situations. In addition, every
action a has a precondition pre(a), given by a set of fluent literals, and a list
of conditional effects condk(a) → effectk(a), k = 1, . . . , na, where condk(a) and
effectk(a) are conjunctions of fluent literals. As mentioned above, we assume
that actions are deterministic and hence that all uncertainty lies in the initial
situation.

In the SAT approach to classical planning, the problem of finding a plan for
P within N time steps is mapped into a model finding problem over a suitable
propositional encoding. In this encoding there are variables xi for fluents and
actions x where i is a temporal index in [0, N] (no action variables xi are created
for i = N though). For a formula B, Bi refers to the formula obtained by
replacing each variable x in B by its time-stamped counterpart xi. The encoding
T (P) of a conformant planning problem P = 〈F, I, O, G〉 is obtained as a slight
variation of the propositional encoding used for classical planning [6]. For an
horizon N , the CNF theory T (P) is given by the following clauses:

1. Init: a clause C0 for each init clause C ∈ I.
2. Goal: a clause CN for each goal clause C ∈ G.
3. Actions: For i = 0, 1, . . . , N − 1 and a ∈ O:

ai ⊃ pre(a)i (preconditions)
condk(a)i ∧ ai ⊃ effectk(a)i+1, k = 1, . . . , ka (effects)

4. Frame: for i = 0, 1, . . . , N − 1, each fluent literal

li ∧
∧

condk
(a)

¬[condk(a)i ∧ ai] ⊃ li+1

where the conjunction ranges over the conditions condk(a) associated with
effects effectk(a) that support the complement of l.

5. Exclusion: ¬ai ∨ ¬a′i for i = 0, . . . , N − 1 if a and a′ are incompatible.

The meaning of Init, Goal, and Actions is straightforward. Frame expresses
the persistence of fluents in the absence of actions that may affect them. Fi-
nally Exclusion forbids the concurrent execution of actions that are deemed
incompatible. For the serial setting, we regard every pair of different actions as
incompatible, while in the parallel setting, we regard as incompatible pairs of
different actions that interfere with each other.

A conformant planner is optimal when it finds conformant plans for the
minimum possible horizon N (makespan). This is achieved by setting the horizon
N to 0, and increasing it, one unit at a time, until a plan is found.

3 Conformant Planning and Models

In classical planning the relation between a problem P and its propositional
encoding T (P) is such that the models of T (P) are in one-to-one correspondence
with the plans that solve P (for the given horizon). In conformant planning, this
correspondence no longer holds: the models of T (P) encode ’optimistic plans’,
plans that work for some initial states and transitions but may fail to work for
others, and hence are not conformant. We will see however that it is possible
to transform the theory T (P) so that the models of the resulting theory are in
correspondence with the conformant plans for P .

Let Plan denote a maximal consistent set of action literals ai (i.e., a full
action valuation), let Init denote a fragment of T (P) encoding the initial situ-
ation, and let s0 refer to a maximal consistent set of fluent literals f0 compatible
with Init (i.e., a possible initial state which we denote as s0 ∈ Init). Then for a
classical planning problem P , Plan is a solution if and only if

T (P) + Plan is satisfiable. (1)

For a conformant problem P with deterministic actions only, on the other hand,
Plan is a solution if and only if

∀ s0 ∈ Init : T (P) + Plan + s0 is satisfiable. (2)

In other words, in the conformant setting Plan must work for all possible initial
states.

In order to find a Plan that complies with (1) it is enough to find a model
of T (P), and then set Plan to the set of action literals that are true in the
model. On the other hand, for finding a Plan that complies with (2) this is not
enough. As we will show, however, this will be enough when the theory T (P) is
transformed in a suitable way. As a first approximation, consider the problem of
finding a Plan that complies with

T (P)′ + Plan is satisfiable. (3)

where T (P)′ is a conjunction that takes into account all the initial states

T (P)′ =
∧

s0∈Init
T (P) | s0 (4)

Here T |X refers to theory T with variables x in T replaced by the value they
have in X: true if x ∈ X, and false if ¬x ∈ X. This operation is known as value
substitution or conditioning [2].

If equations (3) and (4) provided a correct formulation of conformant plan-
ning, we could obtain a conformant plan by finding a model for T (P)′, and
extracting Plan from the value of the action variables in that model.

The formulation (3-4), however, is not correct. The reason is that the theory
T (P) contains fluent variables fi for times i > 0 which are neither in Init nor in

Plan. In (2), these variables can take different values for each s0, while in (3-4),
these variables are forced to take the same value over all possible s0.

We can modify however the definition of T (P)′ in (4) for obtaining a correct
SAT formulation of conformant planning. For this we need to eliminate or forget
the fluent variables fi, for i > 0, from each conjunct T (P) | s0 in (4).

The forgetting of a set of variables S from a theory T [7], also called elimin-
ation or existential quantification, is the dual operation to Projection of T over
the rest of variables V ; V = vars(T)− S. The projection of T over V , denoted
project[T ; V], refers to a theory over the variables V whose models are exactly
the models of T restricted to those variables. For example, if φ = (a1 ∧ f1) ∨ a2

then project[φ; {a1, a2}] = a1 ∨ a2, which can also be understood as ∃f1φ =
(φ | f1 = true)∨(φ | f1 = false) = ((a1∧true)∨a2)∨((a1∧false)∨a2) = (a1∨a2).
Getting rid of the fluent variables fi for i > 0 in the conjuncts T (P) | s0 in (4)
simply means to project such formulas over the action variables, as the variables
in T (P) | s0 are either action variables or fluent variables fi for i > 0 (the fluent
variables fi for i = 0 have been substituted by the their values in s0).

The result is that the transformed theory T (P)′ becomes:

Tcf (P) =
∧

s0∈Init
project[T (P) | s0 ; Actions] (5)

for which we can prove:

Theorem 1. The models of Tcf (P) in (5) are one-to-one correspondence with
the conformant plans for the problem P .

Equation 5 suggests a simple scheme for conformant planning: construct the
formula Tcf (P) according to (5), and then feed this theory into a state-of-the-
art SAT solver. The crucial point is the generation of Tcf (P) from the original
theory T (P): the transformation involves conditioning and conjoining opera-
tions, as well as projections. The key operation that is intractable is projection.
It is well known however that projection, like many other intractable boolean
transformations, can be performed in linear time provided that the theory is in
a suitable compiled form [2]. Of course, the compilation itself may run in expo-
nential time and space, yet this will not be necessarily so on average. We will
actually show that the theory Tcf (P) in (5) can be obtained in time and space
that is linear in the size of the d-DNNF compilation of T (P).

4 Projection and d–DNNF

Knowledge compilation is concerned with the problem of mapping logical theor-
ies into suitable target languages that make certain desired operations tractable
[2]. The compilation of theories into OBDDs is intractable, but has been found
useful in formal verification and more recently in planning [8, 9, 10].

A more recent compilation language is Deterministic Decomposable Negation
Normal Form (d–DNNF [2]). d-DNNFs support a rich set of polynomial time

operations and queries; in particular projection and model counting, that are
intractable over CNFs, become linear operations over d-DNNFs. OBDDs are
a special, less succinct class of d-DNNFs; in fact, there are OBDDs that are
exponentially larger than their equivalent d–DNNFs but not the other way
around [2].

4.1 Decomposability and Determinism of NNF

A propositional sentence is in Negation Normal Form (NNF) if it is constructed
from literals using only conjunctions and disjunctions. A practical representation
of NNF sentences is in terms of rooted directed acyclic graphs (DAGs), where
each leaf node in the DAG is labeled with a literal, true or false; and each non-leaf
(internal) node is labeled with a conjunction ∧ or a disjunction ∨. Decomposable
NNFs are defined as follows:

Definition 1 (Darwiche 2001). A decomposable negation normal form (DNNF)
is a negation normal form satisfying decomposition: for any conjunction ∧iαi

in the form, no variable appears in more than one conjunct αi.

Decomposability is the property which makes DNNF tractable: a decomposable
NNF formula ∧iαi is indeed satisfiable iff every conjunct αi is satisfiable, while
∨iαi is always satisfiable iff some disjunct αi is. The satisfiability of a DNNF
can thus be tested in linear time by means of a single bottom-up pass over its
DAG. A useful subclass of DNNFs closely related to OBDDs is d–DNNF [2].

Definition 2 (Darwiche 2002). A deterministic DNNF (d–DNNF) is a DNNF
satisfying determinism: for any disjunction ∨iαi in the form, every pair of dis-
juncts αi is mutually exclusive.

Model counting over d-DNNF can be done in time linear in the size of the
DAG also by means of a simple bottom-up pass. A theory can be compiled into
d–DNNF by applying the expansion ∆ ≡ (∆ | a ∧ a) ∨ (∆ | ¬a ∧ ¬a)
recursively [11].

4.2 Projection and Conditioning in d–DNNF

For generating a theory equivalent to Tcf (P) in (5), we need to perform three
logical transformations: conditioning, conjoining, and projection. Provided that
the original theory T (P) is compiled in d–DNNF, all these transformations can
be performed in time linear in the size of its DAG representation by a single
bottom-up pass. The resulting theory Tcf (P), however, is in NNF but not in
DNNF due to the added conjunction, and this is why it cannot be checked for
consistency in linear time, and has to be fed into a SAT solver.

5 Conformant Planner

Integrating the previous observations, the proposed conformant planner involves
the following steps. First, a CNF theory T (P) is obtained from a PDDL-like

description of the planning problem extended for representing arbitrary initial
situations and goals. Then

1. The theory T (P) is compiled into the d–DNNF theory Tc(P)
2. From Tc(P), the transformed theory

Tcf (P) =
∧

s0∈Init
project[Tc(P) | s0 ; Actions]

is obtained by operations that are linear in time and space in the size of the
DAG representing Tc(P). The resulting theory Tcf (P) is in NNF but due
to the added conjunction is not decomposable.

3. The NNF theory Tcf (P) is converted into CNF and the SAT solver is called
upon it.

This sequence of operations is repeated starting from a planning horizon N = 0
which is increased by 1 until a solution is found.

Some of the details of the generation of the target theory Tcf (P) from the
compiled theory Tc(P) are important. In particular, it is necessary to com-
pile T (P) into Tc(P) using an ordering of variables that expands on the Init
variables first; this is so that the DAG representing the d-DNNF subtheories
Tc(P)|s0 for each possible initial state s0, all correspond to (non-necessarily dis-
joint) fragments of the DAG representing the compiled d-DNNF theory Tc(P).
Then the DAG representing the target NNF theory Tcf (P), which is no longer
decomposable, is obtained by conjoining these fragments.

6 Experimental Results

We performed experiments testing the proposed optimal conformant planner on
a Intel/Linux machine running at 2.80GHz with 2Gb of memory. Runs of the
d–DNNF compiler and the SAT solver were limited to 2 hours and 1.8Gb of
memory. The d–DNNF compiler is Darwiche’s c2d v2.18 [11], while the SAT
solver is siege_v4 except for very large CNFs that would not load, and where
zChaff was used instead. We used the same suite of problems as [4] and [5].
Most are challenging problems that emphasize the critical aspects that distin-
guish conformant from classical planning. Ring: A robot can move in n rooms
arranged in a circle. The goal is to have all windows closed and locked. Sorting
Networks: The task is to build a circuit of compare-and-swap gates to sort n
boolean variables. Square-center: A robot without sensors can move in a grid
of 2n × 2n, and its goal is to get to the middle of the room. For this it must first
locate itself into a corner. Cube-center: Like the previous one, but in three
dimensions. Blocks: Refers to the blocks-world domain with move-3 actions but
in which the initial state is completely unknown. Actions are always applicable
but have an effect only if their normal ‘preconditions’ are true. The goal is to get
a fixed ordered stack with n blocks. None of the problems feature preconditions,
and only sorting, square-center, and cube-center admit parallel solutions.

We report compilation and search times. The first is the time taken by the
d–DNNF compiler; the second is the time taken by the SAT solver. For the
search part, we show the results for both the optimal horizon N∗ and N∗−1. The
first shows the difficulty of finding conformant plans; the second, the difficulty
of proving them optimal.

In Table 1 we show results of the compilation for optimal horizons in the
serial setting. The compilation of theories for smaller horizons or parallel formu-
lations is normally less expensive. The table shows the optimal horizon N∗ for
each problem, the size of the original CNF theory T (P), the size of the DAG
representing the compiled theory Tc(P) with the time spent in the compilation,
and finally the size of the target theory Tcf (P) in CNF that is fed to the SAT
solver. The first thing to notice is that all the theories considered in [5] compile.
Thus, as in [4], the compilation is not the bottleneck.

CNF theory d–DNNF theory Tcf (P)
problem N∗ vars clauses nodes edges time vars clauses

ring-r7 20 1081 3683 1008806 2179064 192.2 976203 3105362

ring-r8 23 1404 4814 3887058 8340295 1177.1 3779477 11957085

blocks-b3 9 444 2913 5242 20229 0.3 4667 23683

blocks-b4 26 3036 40732 226967 888847 124.5 223260 1104383

sq-center-e3 20 976 3642 11566 22081 1.1 9664 27956

sq-center-e4 44 4256 16586 90042 174781 47.1 81404 238940

cube-center-c9 33 2700 10350 282916 574791 98.9 276474 839027

cube-center-c11 42 4191 16227 658510 1330313 371.6 647994 1958472

sort-s7 16 1484 6679 115258 283278 12.4 112756 390997

sort-s8 19 2316 12364 363080 895247 77.2 359065 1246236

Table 1. Compilation data for sequential formulation and optimal horizon N∗. On the
left, the size of the theories T (P) encoding the conformant planning problems, on the
center, the size of the DAGs representing the compiled theories Tc(P) and the times
spent in the compilation; on the right, the size of the target theories Tcf (P) in CNF
that are passed to the SAT engine.

Table 2 shows the results of the SAT solver over the transformed theory
Tcf (P) for both the optimal horizon N∗ and N∗−1, and for both the sequential
and parallel formulations. While not all problems are solved, the results improve
upon those recently reported in [4], solving one additional instance in square-
center and sorting. This represents an order of magnitude improvement over
these domains. In blocks, on the other hand, there is no improvement, while
the largest ring instances resulted in very large CNF theories that could not be
loaded into Siege but were loaded and solved by zChaff (except for ring-r8 under
the optimal planning horizon).

The planner is not directly comparable to non-optimal planners like CFF
[12], although in many of these problems it has a clear edge. For instance, CFF
times out after 25 minutes on ring-5 and cube-center-5, yet the proposed planner
solves the larger ring-7 in a few seconds, and the larger cube-center-9 (parallel
case) in a few minutes. On the other hand, in problems that are close to classical
planning (as when the uncertainty is small), CFF seems to do much better.

search with horiz k s. with horizon k − 1
problem N∗ #S0 time decisions #act time decisions

serial theories

ring-r7 20 15309 ◦ 2.1 2 20 ◦ 0.8 0

ring-r8 23 52488 > 1.8Gb ◦ 2.4 0

blocks-b3 9 13 0.1 1665 9 0.2 3249

blocks-b4 26 73 > 2h > 2h

sq-center-e3 20 64 18.8 52037 20 207.4 207497

sq-center-e4 44 256 5184.4 1096858 44 > 2h

cube-center-c7 24 343 3771.5 578576 24 5574.2 736567

cube-center-c9 33 729 > 2h > 2h

sort-s5 9 32 0.0 352 9 22.0 35053

sort-s6 12 64 40.0 34451 12 > 2h

sort-s7 16 128 3035.6 525256 16 > 2h

sort-s8 19 256 > 2h > 2h

parallel theories

sq-center-e3 10 64 0.5 2737 20 0.3 1621

sq-center-e4 22 256 423.1 244085 44 1181.5 439532

cube-center-c7 8 343 6.1 4442 24 2.9 1892

cube-center-c9 11 729 114.6 27058 33 156.0 32760

cube-center-c11 14 1331 > 1.8Gb 181.5 13978

sort-s7 6 128 46.1 18932 18 355.4 48264

sort-s8 6 256 ◦ 4256.6 533822 23 > 2h

Table 2. Results for the Search: SAT calls over the tranformed theory Tcf (P) for
the optimal horizon N∗ (left) and N∗ − 1 (right), both for sequential and parallel
formulations (when they differ). We show the number of initial states, the time spent
on the SAT call, the number of decisions made, and the number of actions in the
plan found. Entries ’> 2h’ and ’> 1.8Gb’ mean time or memory exceeded. A signal ◦

indicate that the SAT solver used was zChaff, as siege v4 could not load Tcf (P) due
to its size. Times are in seconds.

7 Discussion

We presented a compile-project-sat scheme for computing optimal conform-
ant plans. The scheme is simple and uses two off-the-shelf components: a d–DNNF
compiler and a SAT solver. We are currently exploring a variation of the
compile-project-sat scheme that may be more suitable for dealing with prob-
lems that are not that far from classical planning, such as those considered in
[12]. When the number of possible initial states s0 is low, rather than getting
rid of the fluent variables fi, i > 0, by projection as in

L =
∧

s0∈Init
project[T (P) | s0 ; Actions] (6)

it may be more convenient to introduce copies of them, one for each possible
initial state s0, resulting in the different formula

L′ =
∧

s0∈Init
[T (P)s0 | s0] (7)

where each T (P)s0 denotes a theory which is like T (P) except that the fluent
variables fi, i > 0, are replaced by fresh copies fs0

i . Action variables, on the other
hand, remain shared among all these theories. It can be shown that models
of L′ as well as the models of L, are in one-to-one correspondence with the
conformant plans that solve the problem. The latter approach, which does not
require projection or compilation, may work better when the number of possible
initial state is low, and collapses to the standard SAT approach to classical
planning when all the uncertainty goes away.

In [13] Rintanen solves conformant planning problems by mapping them into
QBFs of the form ∃plan∀s0 ∃fi φ. Our scheme for conformant planning can
be formulated also for QBFs of this form where it would have many elements
in common with the “Eliminate and Expand” method of Biere [14], where the
elimination is carried out by resolution rather than projection.

Acknowledgments

We thank Adnan Darwiche and Blai Bonet for our joint work in [4] that led
to this research, and for making their d-DNNF compiler and PDDL to CNF
translator, respectively, available to us.

References

[1] Ferraris, P., Giunchiglia, E.: Planning as satisfiability in nondeterministic do-
mains. In: Proceedings AAAI-2000. (2000) 748–753

[2] Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17 (2002) 229–264

[3] Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24 (1992) 293–318

[4] Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by
counting models on compiled d-DNNF representations. In: Proc. of the 15th Int.
Conf. on Planning and Scheduling (ICAPS-05), AAAI Press (2005) 141–150

[5] Rintanen, J.: Distance estimates for planning in the discrete belief space. In:
Proc. AAAI-04. (2004) 525–530

[6] Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Proceedings of AAAI-96. (1996) 1194–1201

[7] Lin, F., Reiter, R.: Forget it! In: Working Notes, AAAI Fall Symposium on
Relevance, American Association for Artificial Intelligence (1994) 154–159

[8] Giunchiglia, F., Traverso, P.: Planning as model checking. In: Proceedings of
ECP-99, Springer (1999)

[9] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
[10] Cimatti, A., Roveri, M.: Conformant planning via symbolic model checking.

Journal of Artificial Intelligence Research 13 (2000) 305–338
[11] Darwiche, A.: New advances in compiling cnf into decomposable negation normal

form. In: Proc. ECAI 2004. (2004) 328–332
[12] Brafman, R., Hoffmann, J.: Conformant planning via heuristic forward search: A

new approach. In: Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS-04). (2004)

[13] Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of
Artificial Intelligence Research 10 (1999) 323–352

[14] Biere, A.: Resolve and expand. In: SAT. (2004)

