
Structural Relaxations by Variable Renaming
and their Compilation for Solving MinCostSAT

Miquel Ramı́rez1 and Hector Geffner2

1 Universitat Pompeu Fabra
Passeig de Circumvalació 8

08003 Barcelona Spain
miquel.ramirez@upf.edu

2 ICREA & Universitat Pompeu Fabra
Passeig de Circumvalació 8

08003 Barcelona Spain
hector.geffner@upf.edu

Abstract. Searching for optimal solutions to a problem using lower
bounds obtained from a relaxation is a common idea in Heuristic Search
and Planning. In SAT and CSPs, however, explicit relaxations are sel-
dom used. In this work, we consider the use of explicit relaxations for
solving MinCostSAT, the problem of finding a minimum cost satisfying
assignment. We start with the observation that while a number of SAT
and CSP tasks have a complexity that is exponential in the treewidth,
such models can be relaxed into weaker models of bounded treewidth
by a simple form of variable renaming. The relaxed models can then
be compiled in polynomial time and space, so that their solutions can
be used effectively for pruning the search in the original problem. We
have implemented a MinCostSAT solver using this idea on top of two
off-the-shelf tools, a d-DNNF compiler that deals with the relaxation,
and a SAT solver that deals with the search. The results over the entire
suite of 559 problems from the 2006 Weighted Max-SAT Competition are
encouraging: SR(w), the new solver, solves 56% of the problems when
the bound on the relaxation treewidth is set to w = 8, while Toolbar,
the winner, solves 73% of the problems, Lazy, the runner up, 55%, and
MinCostChaff, a recent MinCostSAT solver, 26%. The relation between
the proposed relaxation method and existing structural solution meth-
ods such as cutset decomposition and derivatives such as mini-buckets is
also discussed.

1 Introduction

The idea of searching for optimal solutions to a problem using lower bounds
obtained from a relaxation has been common in both Heuristic Search and Plan-
ning. In Pattern Databases, for example, certain state variables are abstracted
away from the problem, and the resulting weaker problem is solved exhaustively.
A table stored in memory saves the distance to the goal from any state of the re-
laxation which provides then a lower bound in the original problem for any state

where the value of the variables that have not been abstracted away coincides [1].
The best results for the Rubik’s Cube, for example, have been obtained in this
way [2]. Likewise, some of the best domain-independent planners use distance
estimators obtained from an explicit relaxation where ’deletes’ are dropped out
of the problem [3].

In SAT and CSPs, the general idea of solving a problem by first solving a
relaxation is implicit in many methods, even if explicit relaxations are seldom
used. For example, node-consistency can be thought as a relaxation where non-
unary constraints are excluded, and similarly, arc-consistency can be thought as
iterating over relaxed problems that contain a single constraint [4].

In this work, we consider the use of explicit relaxations and their use in
MinCostSAT: the problem of obtaining a minimum cost satisfying assignment
of a CNF formula, where the cost of an assignment adds up the cost of the literals
that are true [5]. We start with the observation that while a number of tasks over
graphical models such as SAT and CSPs have a complexity that is exponential
in the treewidth of the underlying interaction graph [6], such models can be
relaxed into weaker models of bounded treewidth by a suitable form of variable
renaming, where a variable that appears in many factors (clauses, constraints,
etc.) is replaced by many fresh new variables that appear in few. Provided that
the relaxed model has a bounded treewidth, the relaxation can be compiled in
polynomial time and space, so that its solutions, obtained from the compiled
representation without search can be used to prune the search in the original
problem, very much as it is done with Pattern Databases in Heuristic Search.

Using these ideas, we have implemented a MinCostSAT solver that we call
SR(w), on top of two off-the-shelf tools: the d-DNNF compiler due to Darwiche
[7] and the MiniSAT 2.0 solver due to Sörensson & Eén [8]. Given a MinCost-
SAT problem over a CNF theory T , SR(w) maps T into the ’renamed’ relaxation
T− which is compiled into d-DNNF [9], a form akin to OBDDs that supports
a number of queries and transformations in polynomial time and in particular,
MinCostSAT (called ’preferred models’ in [10]). The compilation is exponential
in the treewidth of the relaxation T− that we control and call the target treewidth
w. The optimal solution to the original theory T is obtained by performing a
DPLL-style branch-and-bound search over T implemented on top of MiniSAT
exploiting both the lower bounds obtained from the compilation of T− and capa-
bilities such Unit Propagation and Clause Learning. The resulting MinCostSAT
solver, SR(w), is then evaluated empirically over the entire suite of problems
from the 2006 Weighted Max-SAT competition [11].

2 MinCostSAT

MinCostSAT is the problem of obtaining a minimum cost satisfying truth as-
signment of a CNF propositional formula. If the formula is denoted by T , the
cost c(s) of a truth assignment s over T is defined as follows:

c(s) def=
{∑

l:s|=l c(l) if s |= T

∞ otherwise
(1)

where l stands for literals and c(l) stands for the cost of literal l. The optimal
cost c∗(T) of T is the cost of the best (minimum cost) assignment s. In some
formulations, costs are defined only on positive literals, with the costs of negative
literals assumed to be zero [12]. Non-negative costs on negative literals ¬x can
then be captured by introducing new positive literals x′ set to x′ ≡ ¬x. In this
work we do not need this assumption and accommodate costs on both positive
and negative literals. Without loss of generality, however, we assume that all
costs are non-negative; indeed, a positive increment can always be added to
the cost of any pair of complementary literals x and ¬x without changing the
solutions so that none has negative cost and at most one has a positive cost.

MinCostSAT is a (boolean) special case of the class of constraint optimiza-
tion problems called Valued CSPs (VCSPs)[13]. Another special case of VCSPs
closely related to MinCostSAT is Weighted MAX-SAT, where the cost of an
assignment reflects the costs of the clauses that are violated by it [14]. The
transformation of one into the other is simple and involves the addition of a
linear number of variables or clauses, and they both subsume other variations
like MAX-SAT, (Weighted) MIN-ONE, (Weighted) MAX-ONE, and (Weighted)
Partial MAX-SAT [5, 15].

3 Relaxing Graphical Models by Renaming Variables

Current state-of-the-art MinCostSAT and Weighted MAX-SAT perform a branch
and bound search, pruning the space by various forms of constraint propaga-
tion that take into account both the constraints and their weights [16–19]. In
this work, we approach the search in MinCostSAT from a slightly different per-
spective. Rather than pruning values by local consistency methods, we compute
explicit lower bounds by solving optimally a global relaxation. This relaxation is
defined structurally in terms of the constraint or interaction graph that repre-
sents the interactions among the variables in the problem [6].

Relaxations by Variable Renaming

We start with the observation that any graphical model can be relaxed into a
weaker model of bounded treewidth by a simple form of variable renaming, where
a variable that appears in many factors is replaced by many fresh new variables
that appear in few. For example, a graphical model over variables x1, . . . , xn

where there is a factor for each variable pair, has an interaction graph that is
a full clique and a treewidth equal to n − 1. Yet, if a variable xi is replaced by
a different ’alias’ variable xj

i in each of the factors where it appears, a relaxed
model is obtained with treewidth n− 2. Actually, if the same is done for all the
variables x1, . . . , xn, the treewidth of the relaxed model is reduced to 1.

If T is the propositional MinCostSAT theory, we will refer by T− to the
relaxed theory obtained by replacing some or all occurrences of some variables
xi in T by a set of new variables xj

i that we call ’aliases’. There is a lot of freedom
in the choice of the variables xi in T to rename, in the number xj

i of aliases to

introduce for each renamed variable xi, and in the scope of these aliases (i.e.,
the set of clauses in T where xi is replaced by xj

i). A renaming scheme defines
these three aspects.

For simplicity, we consider only schemes where the scopes of the clauses
including the aliases are disjoint (no occurrence of a renamed xi is replaced by
more than one alias), and span all the clauses where xi appears (so that renamed
variables xi do not appear in the relaxation T−). Such schemes can be described
by defining the set of variables xi in T to be renamed (relaxed) along with the
alias xj

i to be used in place of xi in each of the clauses where xi appears. For
example, given a theory T with four clauses:

C1 : x1 ∨ x2 , C2 : ¬x1 ∨ x3 , C3 : x2 ∨ ¬x3 , C4 : x1 ∨ x4

an admissible renaming can be obtained by replacing x2 by the alias x1
2 in clause

C1 and by the alias x2
2 in C3, resulting in the relaxation T−:

C ′
1 : x1 ∨ x1

2 , C2 : ¬x1 ∨ x3 , C ′
3 : x2

2 ∨ ¬x3 , C4 : x1 ∨ x4

The interaction graphs of both of these theories are displayed in Figure 1, from
which it is possible to see that T has treewidth 2, while T− has treewidth 1.

x1

x2

x3

x4

x1

x21

x3

x4

x22T T-

Fig. 1. The interactions graphs of T and T− where variable x2 in T is renamed into
the aliases x1

2 and x2
2. The corresponding treewidths are 2 and 1

We say that variable xi is fully renamed when the different occurrences of xi

in T are replaced by different aliases xj
i in T−.3 When the variables are renamed

fully, the only aspect that a renaming scheme must define is the set of variables to
rename. For this we make use of the notion of w-cutsets: these are sets of variables
xi in T whose instantiation ensures that the (induced) treewidth of the resulting
theory is bounded by w. This notion, introduced in [20], has been proposed
as an alternative way for combining structural and search methods: basically,
one can choose an small target treewidth w, search then exhaustively over the

3 It is assumed that no variable in T appears twice in a given clause. If not, multiple
occurrences can be collapsed into one when they all have the same sign, and else the
clause is a tautology and can be deleted.

possible instantiations v of the w-cutset Cw, solving the resulting theories Tv by
structural methods with a complexity exponential only on w. For a bounded w,
the complexity of this method is dominated by the exhaustive search over the
possible instantiations over the w-cutset variables and hence is exponential in
|Cw|.

The method that we propose makes use of the w-cutset notion too but by
using renaming rather than instantiation for simplifying T into a tractable form,
does not require an exhaustive search over the w-cutset variables, except in the
worst case.

The theory T− obtained by renaming fully all the variables xi in a w-cutset
of T , can be processed indeed in time that is exponential in w, in the same
way as the theory Tv that is obtained from T by instantiating such variables.
Yet, while in the latter case the complexity bound follows from the (induced)
treewidth of its interaction graph, in the former, it does not. This is because
treewidth is a rough structural notion affected by the size of the clauses, a size
that can be reduced by instantiating variables in a clause but not by renaming
such variables. Finer structural measures like hypertree width [21] that take into
account the size and scope of the constraints, can be used instead for character-
izing the complexity bounds that follow from renaming. We will take however
a simpler route and refer to the simplified (induced) treewidth of a theory T as
the (induced) treewidth of its simplified interaction graph: this is the interaction
graph of T with the nodes representing the variables that occur in a single clause
of T removed.

Theorem 1. Let T be a CNF formula and let S be a w-cutset for T . Then the
relaxation T− obtained by fully renaming each variable xi in S has a simplified
treewidth bounded by w.

A simplified treewidth bounded by w ensures a complexity exponential in w
over the typical queries in graphical models provided that variables that appear
in a single factor can be eliminated in time that does not grow with the size of the
factor. This is certainly true in our context for variables that appear in a single
clause, as individual clauses can be compiled into d-DNNF (see below) in linear-
time [9]. The alias variables xj

i that result from fully renaming a variable xi in
T fall into this class. Note also that simplified treewidth of w implies treewidth
of w when no factor has a size greater than w.

For simplicity, when no confusion arises, we will use the term treewidth to
refer to simplified treewidth, and refer to the relaxation method that maps the
theory T into T− according to Theorem 1, as w-cutset renaming. This is a
polynomial and fast operation. The theory T− above, whose interaction graph
is shown in Figure 1 is a w-cutset renaming relaxation of T , with w = 1 for the
w-cutset S = {x2}.

In order to compute a w-cutset, the GWC algorithm presented in [22] can be
used. The GWC algorithm greedily and incrementally builds a minimal set of
variables S that ensures |Ci/S| ≤ w over the maximal cliques Ci in the min-fill
tree-decomposition of the model. In our solver, we just substitute the min-fill

ordering by minimum induced width (MIW) [6] which scales up better for large
theories at a small cost in size of the cutsets.

In the experiments, we consider also an alternative relaxation method that
we call w-mini-bucket renaming as it is based on the mini-bucket approximation
scheme [23]. The w-mini-bucket renaming scheme runs the mini-buckets pro-
cedure symbolically. That is, propagating only the scopes of the primitive and
induced functions but not the functions themselves. Each scope keeps track also
of the set of primitive functions (clauses) it was derived from. If x1, · · · , xi,
· · · , xk, · · · , xn is the ordering in which the variables are processed, then when
processing the bucket of variable xi, if the number of variables xk 6= xi, k ≥ i
appearing on that bucket is above the w bound, the scopes in the bucket are par-
titioned into sets s1, . . . , sm none of which has more than w variables xk, k > i.
The variable xi is then renamed into xj

i in all the clauses that are associated
with the scopes in sj .

Like w-cutset renaming, w-mini-bucket renaming yields relaxations T− with
treewidth bounded by w, but unlike the former it does not use full variable
renaming, as an alias may end up appearing in different clauses. As we will see,
the experimental results for the two methods tend to be similar, with an slight
edge for w-cutset renaming.

4 Compiling the Relaxation into d-DNNF

If the relaxation T− has bounded (simplified) treewidth, then all the MinCost-
SAT sub-problems problems T− ∪ s− arising in the search where s− is a set of
T− literals, can be solved from scratch in polynomial time and space by variable
elimination [24]. A more efficient solution, which is more elegant too, can be ob-
tained however by compiling the formula in a suitable way so that the solutions
to these sub-problems can be efficiently ’retrieved’ from a compiled represen-
tation. For formulas expressed in CNF, Darwiche’s CNF to d-DNNF compiler
[7] allows us to do exactly that in time and space exponential in the formula
treewidth [9].

A formula T in d-DNNF is a rooted DAG (Directed Acyclic Graph) whose
leaves are the positive and negative literals associated with the variables in T
along with the constants true and false, and whose internal nodes stand for con-
junctions or disjunctions (AND and OR nodes, respectively). A d-DNNF formula
is thus in Negated Normal Form (NNF) as it contains only the connectives for
conjunctions, disjunctions, and negations, and negation occurs only in literals [9].
The d-DNNF representation enforces two additional constraints, decomposabil-
ity (no variable shared among sub-formulas represented by the children of an
AND node) and determinism (no model shared among sub-formulas represented
by the children of an OR node), that enable a large number of otherwise in-
tractable queries and transformations to be done in time which is linear in the
size of the DAG representation [25]. For example, the procedure for computing
the cost of a formula T in d-DNNF can be expressed in term of the value of the

function c∗(n) computed bottom up over the nodes n of the DAG as follows [10]:

c∗(n) =


0 if n = true
∞ if n = false
c(L) if n = L where L is a literal different than true and false∑

i c∗(ni) if n is an AND node with children ni

mini c∗(ni) if n is an OR node with children ni

(2)
If the DAG represents the compilation of T− then the cost c∗(T−) is given by
the value c∗(n) of the root node, while the cost c∗(T− ∪ s−) of the theory T−

extended with a set of literals s− is obtained from the same bottom-up recursion
but setting the costs c(L) of the literals L whose negation is in s− to ∞. Finally,
while the costs c∗(T− ∪ s−) are obtained in a single bottom-up pass over the
DAG, a minimum cost model M of T can be obtained by a subsequent top-down
pass, collecting the literals in the leaves that can be reached from the root node,
following all of the children of every reached AND node, and a single best child
(min. cost) of every reached OR node [10].

In order to ensure that the relaxation T− compiles in time and space ex-
ponential in the target (simplified) treewidth w set for the relaxation, we must
instruct the d-DNNF compiler to use an elimination ordering over the variables
in T− (in the form of a decomposition tree [26]) related to the variable ordering
used for obtaining T− from T . For this, if T− was obtained by w-cutset renam-
ing, we just place the alias variables xj

i first in the ordering, while if T− was
obtained by w-mini-bucket renaming, the aliases xj

i are introduced in place of
the renamed variables xi in the order in which they were ’eliminated’ (symboli-
cally) during the relaxation. These elimination orders ensure that the compiler
processes the relaxed theories T− in time and space exponential in the target
width w in the worst case.

5 The Cost of Renamed Variables

If there are costs c(xi) > 0 or c(¬xi) > 0 associated to variables xi in T that
have been renamed in T−, we need to decide how to allocate these costs to their
aliases xj

i . One possibility is to ignore such costs by setting the costs of all alias
literals to zero. This ensures that the compilation of T− yields lower bounds for
T , but they are not as informed as they could be. Setting the costs of the all
the alias literals xj

i and ¬xj
i to the cost of the corresponding literals xi and ¬xi

can lead to overestimation and hence does not necessarily produce lower bounds.
Actually, a simple option that uses the costs over renamed variables xi and yields
lower bounds is to transfer these costs to a particular, designated alias variable
xj

i , thus setting c(xj
i) and c(¬xj

i) to c(xi) and c(¬xi) respectively, leaving the
cost of all other alias literals in zero. This is actually the choice that we have
made in our solver where such designated alias variables are selected greedily
using the idea of Maximal Independent Sets (MIS) [27, 12]. We have also tried
an scheme where the cost of a renamed literal is split uniformly over it alias

literals, that also ensures admissibility (lower bounds), but found the results to
be slightly inferior.

A MIS ω is a subset of clauses that is maximally independent in the sense
that no two clauses in ω share a variable. We build a MIS greedily, starting from
the set S of clauses in T− that include some alias variable xj

i . Then iteratively
a clause C with maximum “average cost” defined in [12]:∑

li∈C c(li)
|{li ∈ Cj}|

(3)

is chosen and added to ω, while all clauses featuring an alias variable xk
i coming

from the same renamed variable xi as an alias variable xj
i in C are removed

from S. This process continues until no more clauses are left in S. The alias
literals xj

i or ¬xj
i in a clause of ω get then all the weight from the renamed

literals xi and ¬xi, ensuring that this cost allocation yields a lower bound over
the relaxation and also that the alias literals that get these weights are more
tightly constrained.

6 The Search

The search algorithm looks for the best model of T by looking for the best model
of the relaxation T− that satisfies the constraints xk

i = xj
i for all the aliases xk

i

and xj
i of the same renamed variables xi in T . This is achieved by a branch-

and-bound DPLL-style search over T whose state s is a set s of literals over the
renamed variables xi that represents the commitments made so far. Initially s is
empty. Then in each step, the best model M of T−∪s− and its cost c∗(T−∪s−)
are computed, where s− is the set of alias literals that correspond to s: namely,
all xj

i (resp. ¬xj
i) are in s− if xi (resp. ¬xi) in s. The lower bound LB(s) is

set to c∗(T− ∪ s−). The search does not continue beneath s if either LB(s)
is not smaller than the current upper bound (a bound conflict), the boolean
constraint propagation procedures derives an empty clause (a logical conflict),
or if M has no discrepancies (a solution). Else, a variable xi with a discrepancy
in M is selected (an alias pair xj

i and xk
i such that xj

i 6= xk
i in M) the state

s is extended with either xi or ¬xi, and the process is iterated. By setting a
small target width w, the relaxation procedure that yields T− from T , ensures
that the compilation of T− can be done in polynomial time and space, and the
compilation in turn ensures that the best model M of T− ∪ s− and its costs can
be computed efficiently for any set of literals s−.

This basic search procedure is implemented on top of MiniSAT 2.0 [8], thus
relying on the efficient boolean constraint propagation provided by the two-
literal watching rule [28] which is performed right after every commitment. We
also use its (dynamic) VSIDS variable selection heuristic [28] but branch only
on the variables xi that have been renamed, choosing always first the value xi

or ¬xi with least cost c(xi) or c(¬xi). For relaxations T− obtained by w-cutset
renaming this means that in the worst case, the size of the search space will

be exponential in the size of the w-cutset used. Within this space, however, the
lower bounds LB(s) obtained from the compiled relaxation and the pruning that
they produce, will normally keep the search away from this worst case scenario,
as the experimental results below show.

7 Learning from Bound Conflicts

The implementation of the search on top of a SAT solver benefits from the ability
of to learn new clauses during search after logical failures. It is well known that
clause learning is a key technique in current solvers that can reduce the search
space quite drastically [29, 30]. The success of learning from logical conflicts in
SAT, suggested to look at the problem of learning from bound conflicts as when
the lower bound LB(s) does not improve the current upper bound UB for a given
state s; i.e., when LB(s) ≥ UB. In the context of solvers whose inference is based
on unit propagation, this problem has been approached in [31] and [12] where
a set of literals that explains the bound conflict is obtained and negated. Our
solver, however, does not use only unit resolution but also and mainly optimal
inference over the compiled relaxation T−. The trivial way to learn in such
setting is by simply recording the clause ¬s when LB(s) ≥ UB. This, however,
while enables us to preserve the conflict-directed implementation of MiniSAT,
has not pruning effect. A much more effective alternative is to find the smallest
possible subset s′ in s that explains the bound conflict, i.e., a subset s′ ⊆ s such
that LB(s′) ≥ UB. Interestingly, it is possible to use the compiled d-DNNF
representation of T− for computing such ’causes’ for failure even if there is no
guarantee that such causes are minimal. The idea is simple and requires only a
single downward pass over the DAG representing the compilation of T−.

Basically, starting from the root node of the DAG representing the compila-
tion of T− we perform a top-down scan, skipping some nodes, while collecting
the literals l in the leaves that are reached, retaining from this set only the lit-
erals l in s. Of course, if no node is skipped in this scan, we will get back the set
s itself. Yet as we will see there are three types of nodes n that can be skipped
because the commitments beneath them in the graph, if any, are not relevant
either to the cost of their parent node in the graph or the bound failure. For this,
let c∗(n) be the cost of node in n in the DAG when evaluated in the context of
the commitments s− and let c∗0(n) be the value of the same node when evaluated
in the context with no commitments at all (i.e., with s− assumed empty, as in
the beginning of the search).

Clearly if c∗(n) = c∗0(n), it means that the commitments beneath n are not
relevant to its cost given s0. Likewise, if n is an OR-node, the commitments
beneath the child n1 are not relevant to the cost of n either if c∗0(n1) > c∗(n).
Last, if n is an AND-node, the commitments beneath the child n1 can be ignored
if c∗0(n1) + c∗(n2) ≥ UB as the commitments beneath the other child n2 suffice
to explain the bound failure.

By performing and exhaustive scan of the DAG representing T− after finding
that LB(s) ≥ UB, starting from the root node while skipping nodes as above, it

is then possible to get a reduced set of alias literals t− ⊆ s− such that LB(t) ≥
UB as well. The conflict clause ¬t is then fed to the 1st Unique Implication
Point [29] heuristic implemented by MiniSAT 2.0, that derives the blocking clause
and the decision level to backtrack to.

8 Empirical Evaluation

The MinCostSAT solver SR(w) accepts a MinCostSAT problem in the form of
a cost function c and a CNF theory T . Using w-cutset renaming, it then maps
T into a relaxation T− which is compiled in d-DNNF using Darwiche’s c2d
compiler, and sets the cost of the renamed literals according to the MIS procedure
described above. It then carries a DPLL-style branch-and-bound search on top of
MiniSAT 2.0 that benefits from the lower bounds obtained from the relaxation,
as well as from unit propagation and clause learning from both logical and bound
conflicts.

The experiments below have all been run on a grid consisting of 76 nodes,
each one being a dual-processor Xeon “Woodcrest” dual core computer, with a
clock speed of 2.33 GHz and 8 Gb of RAM. Execution time was limited to 1,800
seconds.

Overall performance

Table 1 compares SR(w) against three state-of-the-art Weighted-MAX SAT and
MinCostSAT solvers over the 559 problems of the 2006 Weighted SAT Compe-
tition [11]: the winner of the competition, toolbar [17], the runner-up, Lazy [32],
and the recent MinCostSAT solver, MinCostChaff [12] all ran on the same plat-
form. The problems were converted into MinCostSAT by adding a slack variable
x into each non-unary clause and setting c(x) to the weight of the clause. Unary
clauses over a literal x (¬x) were removed and their weight was assigned to ¬x
(x) resp. Last, hard clauses, represented with a very large weight in Weighted
MAX-SAT, were modeled as hard clauses (crisp constraints).

The competition problems fall into different categories: MinCostSAT, where
all clauses are hard constraints and literals are weighted, Weighted Max-SAT,
where all clauses are soft and weights are associated to constraints, and Weighted
Partial Max-SAT which have a mix of both hard and soft constraints. This is
explicitly indicated in Table 1.

The value of the target treewidth w used in the SR(w) solver is w = 8. The
performance for other values of w is analyzed below. From the results shown,
it is clear that SR(w) does well in relation to state-of-the-art MinCostSAT and
Weighted-MAX solvers, trailing only Toolbar, while showing an slight edge over
Lazy, which does a lot better in these instances than MinCostChaff. The best
relative performance of SR(w) is on the Weighted Partial Max-SAT problems,
where in two domains (WCSP; dense tight and sparse tight) manages to solve
10 and 17 instances where the other solvers solve none.

SR(w) toolbar-3.1 Lazy MinCostChaff

Set Name N S T S T S T S T

Auctions (paths) 30 20 136.28 28 244.49 21 123.69 0 0
Auctions (sched.) 30 18 131.97 30 82.93 28 0.65 6 317
Auctions (regions) 30 30 171.07 30 3.39 30 41.39 13 173
Max-Clique (brock) 12 0 – 4 59.14 4 66.57 0 0
Max-Clique (c-fat) 7 3 23.92 7 10.99 7 0.07 1 973
Max-Clique (ham.) 6 2 23.92 5 67.03 5 119.02 3 627
Max-Clique (John.) 4 2 1.40 3 34.96 3 25.98 2 782
Max-Clique (Kell.) 2 1 16.63 1 20.67 1 27.50 0 0
Max-Clique (Mann) 4 1 0.06 2 48.63 1 0.18 1 1,472
Max-Clique (p hat) 12 1 1,813.73 7 385.63 7 367.21 3 1,591
Max-Clique (san) 11 0 – 4 649.00 1 6.03 0 0
Max-Clique (sanr) 4 0 – 3 463.08 2 466.25 0 0

Max-One 45 40 130.65 45 129.93 30 357.29 1 1,623
WCSP (SPOT5) 21 9 16.24 5 81.03 3 533.96 2 277

QCP 25 6 242.99 11 133.25 7 255.79 25 43

MinCostSAT 243 133 54.7% 185 76.1% 150 61.7% 57 23.5%

WCSP (S-L) 20 20 40.22 18 344.46 10 351.52 17 252
WCSP (D-L) 20 10 722.98 16 446.24 13 629.06 3 339
WCSP (D-T) 30 10 546.82 0 0.00 0 0.00 0 0
WCSP (S-T) 20 17 413.89 0 0.00 0 0.00 0 0

WCSP (SPOT5) 21 9 16.24 4 83.02 3 655.94 8 1,189

Wt. Partial Max-SAT 111 66 59.5% 38 34.2% 26 23.4% 28 25.2%

WCSP (S-L) 20 13 6.93 20 3.33 18 299.49 15 285
WCSP (D-L) 20 11 656.23 20 17.51 20 260.34 1 970
WCSP (D-T) 30 27 270.02 30 33.44 0 0.00 0 0
WCSP (S-T) 20 13 60.22 20 161.54 0 0.00 0 0

Wt. Max-Cut (spin.) 5 2 0.43 3 49.71 2 0.14 2 820
Wt. Max-Cut (brock) 12 2 0.10 12 9.20 12 11.62 0 0
Wt. Max-Cut (c-fat) 7 4 15.44 7 7.35 7 15.50 1 881

Wt. Max-Cut (hamm.) 6 0 – 4 67.97 5 285.10 3 638
Wt. Max-Cut (john.) 4 1 12.10 3 54.79 3 47.45 2 731
Wt. Max-Cut (keller) 2 0 – 2 10.33 2 11.20 0 0
Wt. Max-Cut (mann) 4 2 78.20 4 1,034.70 4 640.47 1 1,492
Wt. Max-Cut (p-hat) 12 6 193.53 12 1,138.46 12 7.03 2 1,415
Wt. Max-Cut (san) 11 1 541.14 11 54.73 11 36.53 0 0
Wt. Max-Cut (sanr) 4 1 1,575.30 4 39.59 4 16.86 0 0

Wt. Ramsey 48 33 124.83 35 3.27 29 42.72 34 17

Wt. Max-SAT 205 116 56.6% 187 91.2% 129 62.9% 61 29.8%

Total 559 315 56.4% 410 73.3% 305 54.6% 146 26.1%

Table 1. Overall performance over the 2006 Weighted SAT Competition instances. S is
the number of solved instances in each domain and T the average time needed to solve
them in seconds. Domains are split into native MinCostSAT, Weighted Partial Max-
SAT, and Weighted Max-SAT. Times for SR(w) include the relaxation, compilation
and search, for the target treewidth fixed at w = 8 which results in the best coverage
over these instances.

Domains I w=1 w=2 w=4 w=8 w=16 w=32 w=64 w=tw

Auction (paths) 30 5 10 12 20 25 24 7 29
Auction (sched.) 30 18 17 18 18 20 22 17 26
Auction (regions) 30 24 25 28 30 30 30 29 30

Max-Clique 62 10 10 11 10 10 6 4 11
Max-One 45 42 42 42 40 17 0 0 9

WCSP (SPOT5) 42 8 8 8 18 8 7 0 12
QCP 25 10 10 9 6 0 0 0 0

WCSP (S-L) 40 12 22 32 33 31 0 0 0
WCSP (D-L) 40 1 1 3 21 0 0 0 0
WCSP (D-T) 60 0 0 2 37 28 0 0 9
WCSP (S-T) 40 1 0 0 30 29 0 0 2

Wt. Max-Cut (spin.) 5 1 2 2 2 1 0 0 1
Wt. Max-Cut 62 2 7 7 17 10 0 0 7
Wt. Ramsey 48 25 25 26 33 15 0 0 10

Total Solved 559 159 179 200 315 224 89 57 146

% solved 28.4% 32.0% 35.8% 56.4% 40.1% 15.9% 10.2% 26.1%

Table 2. Impact of target treewidth parameter w in SR(w): Number of problems
solved for each value of w. The last column with w = tw, means no relaxation at all so
that T− = T . In such a case, the problem is solved without search from the d-DNNF
compilation of T , when the compilation is successful.

Impact of Target Width, Learning, and Renaming Schemes

Table 2 shows the number of problems solved by SR(w) for different bounds
w = 1, 2, 4, 8, 16, . . . on the (simplified) treewidth of the relaxation. Interestingly,
the best coverage is not obtained for the extreme values of w but for w = 8 and
w = 16. The last column shows the results corresponding to the relaxation
T− = T . In such a case, the theories T , if they compile, are solved without
search (no variables are renamed), so that column is testing the CNF to d-
DNNF compiler, which does pretty well, solves by itself the same number of
problems as MinCostChaff. Further details on some of the instances for various
values of w are shown in Table 3 and Table 4, illustrating the typical trade-off
between search and inference: for relaxations with larger w, the search visits less
number of nodes, but the compilation is more expensive in terms of space and
time, and the overhead per node in the search (which is linear in the size of the
compilation) is greater. Indeed most of the failures for widths w ≤ 32 are search
timeouts.

Table 5 shows the combined impact of the treewidth bound w, the renaming
scheme (w-cutset vs. w-mini-buckets), and learning (turned on and off) on two
instances. As it can be seen, learning can help a lot, in particular, for small
values of w, while the differences between the results obtained with w-cutset
and w-mini-bucket renaming are not so clear cut.

Problem # vars. # Clauses tw w # Nodes Relax Comp Search Total

8.wcsp.dir 20 21 6 4 2 0.001 0.010 0.000 0.011
1502.wcsp.dir 515 427 7 4 20 0.045 0.040 0.003 0.088
503.wcsp.dir 317 849 13 12 7 0.036 0.120 0.002 0.158
404.wcsp.dir 187 966 23 16 162 0.022 0.070 0.019 0.111
54.wcsp.dir 154 441 23 8 428 0.011 0.040 0.036 0.087
29.wcsp.dir 139 629 31 16 98 0.016 0.080 0.026 0.122

1504.wcsp.dir 1,577 6,312 43 32 339 0.853 16.380 38.971 56.204
505.wcsp.dir 552 3,296 46 45 3 0.182 19.230 0.132 19.544
408.wcsp.dir 392 3,013 55 32 1372 0.113 0.670 10.458 11.241
42.wcsp.dir 361 1,883 61 32 10,654 0.084 4.660 733.013 737.757

Table 3. A closer look at some instances from the SPOT5 domain: tw is the instance
upper bound treewidth as estimated by the MIW ordering, w is the treewidth bound
that produced the best total time for SR(w) over each instance, and Relax, Comp, and
Search are the relaxation, compilation and search times all in seconds.

w d-DNNF size # Nodes Relax. Comp. Search Total

1 5,581 453,758 0.03 0.04 131.14 131.21
2 5,130 76,231 0.02 0.03 7.65 7.7
4 4,922 4,737 0.02 0.03 0.41 0.46
8 11,240 482 0.02 0.05 0.07 0.13
16 25,721 98 0.02 0.08 0.03 0.12
30 35,822 3 0.01 0.32 0 0.34

Table 4. A closer look at the performance for various relaxation treewidths w over the
29.wcsp.dir instance from Table 3. d-DNNF size denotes the number of nodes in the
d-DNNF DAG while # nodes refers to the number of nodes during search.

w-mini-buckets renaming w-cutset renaming

w Learning No learning Learning No learning

1 21,373 (21.99) 98,461 (102.6) 14,399 (15.88) Timeout
2 25,162 (28.3) 129,859 (143.63) 9,302 (10.1) 556,181 (546.47)
4 64,716 (76.61) 146,377 (168.29) 11,218 (18.71) 75,511 (105.81)
8 11,627 (60.63) 18,473 (96.17) 4,889 (40.08) 9,669 (67.25)
16 474 (196.96) 695 (300.37) 238 (186.59) 737 (533.52)

Table 5. Number of nodes in the search and total run-time (in parenthesis) over a
random Max-3-SAT instance. w denotes the treewidth bound on the relaxation. MIW
estimate was 29.

9 Discussion

We have presented an structural relaxation scheme based on renaming variables
that maps a CNF theory T into a relaxation T− with a (simplified) treewidth
bounded by a parameter w. We have then used this relaxation for developing a
MinCostSAT solver that obtains its lower bounds from a suitable compilation
of the relaxation into d-DNNF. The observed performance of this solver, imple-
mented on top of a state-of-the-art SAT solver that benefits also from efficient
unit propagation and clause learning, suggests that the idea of compiling struc-
tural relaxations for guiding the search, is an idea worth exploring in further
depth that may be applicable in other contexts too. This approach is closely
related to other methods that aim to combine structural and search-methods
and in particular to Dechter’s mini-buckets. Indeed, if the relaxation is done
by the scheme that mimics mini-buckets which we call w-mini-bucket renaming,
we would be obtaining the same sort of structural lower bounds. On the other
hand, by appealing to explicit relaxations, our approach is more general as it is
not tied to a particular renaming scheme, can benefit from existing tools such as
SAT solvers and d-DNNF compilers, and deals in a natural way with dynamic
variable ordering. Just in time for the last version of this paper, we have learned
about an independent but closely related relaxation scheme in the context of
Bayesian Networks to appear at UAI-07 [33].

Acknowledgements

We thank the anonymous reviewers for useful comments, R. Dechter for an
informative exchange on treewidth, and N. Sörenssón, D. Le Berre, and Z. Fu for
answering various questions about MiniSAT and MinCostChaff. We also thank
the authors of the tools, the c2d compiler and MiniSAT, used in our solver, and
R. Isla from UPF for help with the cluster. H. Geffner is partially supported by
grant TIN2006-15387-C03-03 from MEC, Spain.

References

1. Culberson, J.C., Schaeffer, J.: Pattern Databases. Comp. Int. 14 (1998)
2. Korf, R.E.: Finding Optimal Solutions to Rubik’s Cube Using Pattern Patabases.

In: Proc. AAAI-98. (1998)
3. Bonet, B., Geffner, H.: Planning as Heuristic Search. Art. Int. 129 (2001)
4. Mackworth, A.K.: Consistency in Networks of Relations. Art. Int. (8) (1977)
5. Li, X.Y.: Optimization Algorithms for the Minimum–Cost Satisfiability Problem.

PhD thesis, North Carolina State University (2004)
6. Dechter, R.: Constraint Processing. Morgan Kauffman (2003)
7. Darwiche, A.: New Advances in Compiling CNF to Decomposable Negational

Normal Form. In: Proc. ECAI’04. (2004)
8. Eén, N., Söressón, N.: MiniSAT: an Extensible SAT Solver. Technical report,

Chalmers University (2005)

9. Darwiche, A.: Decomposable Negation Normal Form. Journal of the ACM 48(4)
(2001) 608–647

10. Marquis, P., Darwiche, A.: Compiling Propositional Weighted Bases. Artificial
Intelligence 157(1–2) (2004) 81–113

11. J. Argelich et al.: First Evaluation of Max-SAT solvers. Available at
http://www.iiia.csic.es/ maxsat06 (2006)

12. Fu, Z., Malik, S.: Solving the Minimum Cost Satisfiability Problem using SAT
Based Branch-and-Bound Search. In: Proc. of ICCAD’06. (2006)

13. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaille, G., Fargier, H.:
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Compari-
son. Constraints 4(3) (2004) 199–240

14. Papadimitrou, C.H.: Computational Complexity. Addison-Wesley (1994)
15. Giunchiglia, E., Maratea, M.: Solving Optimization Problems with DLL. In: Proc.

of ECAI’06. (2006)
16. Larrosa, J., Heras, F.: Resolution in Max-SAT and its Relation to Local Consis-

tency in Weighted CSPs. In: Proc. of IJCAI-05. (2005) 193–199
17. Larrosa, J., Heras, F.: New Inference Rules for Efficient Max-SAT Solving. In:

Proc. AAAI’06. (2006)
18. Li, C.M., Manyá, F., Planes, J.: Detecting Disjoint Inconsistent Subformulas for

Computing Lower Bounds for Max-SAT. In: Proc. AAAI’06. (2006)
19. de Givry, S., Larrosa, J., Messeguer, P., Schiex, T.: Solving Max-SAT as Weighted

CSP. In: Proc. CP-03. (2003) 363–376
20. Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping,

Learning and Cutset Decomposition. Artificial Intelligence 43(3) (1990) 273–312
21. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable

queries. J. Comput. Syst. Sci. 64(3) (2002) 579–627
22. Bidyuk, B., Dechter, R.: On Finding Minimal w-cutset. In: Proc. UAI-04. (2004)
23. Dechter, R.: Mini–Buckets: a General Scheme for Generating Approximations in

Automated Reasoning. In: Proc. of IJCAI-97. (1997) 1297–1303
24. Dechter, R.: Bucket Elimination: a Unifying Framework for Reasoning. Artificial

Intelligence 113(1–2) (1999) 41–85
25. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. Journal of AI Research

(17) (2002) 229–264
26. Darwiche, A.: Recursive Conditioning. Artificial Intelligence 126(1–2) (2001) 5–41
27. Coudert, O., Madre, J.C.: New Ideas for Solving Covering Problems. In: Proc. of

DAC’95. (1995) 641–646
28. Moskewicz, M.W., Madigan, C.F., et al: Chaff: Engineeering an Efficient SAT

Solver. In: Proc.of DAC-01. (2001)
29. Zhang, L., et al., C.F.M.: Efficient Conflict Driven Learning in a Boolean Satisfi-

ability Solver. In: Proc. of ICCAD’01. (2001)
30. Silva, J.P.M., Sakallah, K.A.: GRASP – A New Search Algorithm for Satisfiability.

In: Proc. of ICCAD’96. (1996) 220–227
31. Manquinho, V., Marques-Silva, J.: Search Pruning Techniques in SAT-based

Branch-and-Bound Algorithms for the Binate Covering Problem. IEEE Trans.
on CAD and Integrated Circuit and Systems 21 (2002) 505–516

32. Alsinet, T., Manyá, F., Planes, J.: Improved Exact Solvers for Weighted Max-SAT.
In: Proc. of the 8th SAT conference. (2005)

33. Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating
upper bounds in bayesian networks. In: Proceedings UAI-07. (2007) To appear.

