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Abstract. Many benchmark domains in AI planning including Blocks,
Logistics, Gripper, Satellite, and others lack the interactions that char-
acterize puzzles and can be solved non-optimally in low polynomial time.
They are indeed easy problems for people, although as with many other
problems in AI, not always easy for machines. In this paper, we address
the question of whether simple problems such as these can be solved in a
simple way, i.e., without search, by means of a domain-independent plan-
ner. We address this question empirically by extending the constraint-
based planner CPT with additional domain-independent inference mech-
anisms. We show then for the first time that these and several other
benchmark domains can be solved with no backtracks while performing
only polynomial node operations. This is a remarkable finding in our
view that suggests that the classes of problems that are solvable without
search may be actually much broader than the classes that have been
identified so far by work in Tractable Planning.

1 Introduction

Simple problems can be hard for a general problem solver when the structure
of the problems is not exploited. Domains like Blocks, Logistics, Satellite and
others, for example, have all a low polynomial complexity (once the optimal-
ity requirement is dropped) and yet they all have been challenging for domain-
independent planners until quite recently. Current planners solve these and other
problems by exploiting structure in the form of heuristic functions that are ex-
tracted automatically and guide the search for plans [1, 2].

In this paper, we address the question of whether these and other simple,
tractable domains can be solved by a domain-independent planner with no search
at all by performing polynomial node operations only. The work in Tractable
Planning addresses a related question by studying fragments of general planning
languages such as Strips over which planning is polynomial [3–6]. Unfortunately,
the fragments that have been identified so far as tractable remain somehow
narrow and do not account for the tractability of the standard benchmarks.



In this work we approach this problem in a different way – empirically – by
developing a general planning algorithm and showing that it solves these and
other domains backtrack free, suggesting thus that the classes of problems that
can be solved with no search by means of a domain-independent planner may be
much broader than the ones that have been identified theoretically so far. Closing
the gap between the empirical results and the theoretical accounts arises then
as a key challenge that we hope to approach elsewhere.

The planning algorithm that we use for solving the various domains backtrack-
free is an extension of the constraint-based planner cpt, an optimal temporal
planner that combines a POCL branching scheme (for Partial Order Causal Link
Planning [7]) with strong pruning mechanisms [8]. The extension is modular and
takes the form of additional domain-independent constraints and inference mech-
anisms. We will refer to domain-independent planners that aim to solve simple
problems in a backtrack-free manner by performing low polynomial operations
in every node, as easy planners. The development of easy planners, we believe,
is a crisp and meaningful goal, which may yield insights that an exclusive focus
on performance may not, like the identification of broader tractable planning
fragments, and the process by which people actually plan. Humans indeed are
quite good at solving these simple problems, and while it is often assumed that
this ability is the result of domain-dependent strategies, our results suggest that
they may also result from simple but general inference mechanisms.

By itself, cpt like other SAT and constraint-based optimal planners [9–11],
does not make for a good suboptimal planner and much less for an easy planner.
Indeed, while SAT and constraint-based planners can be used with large, non-
optimal planning horizons (which are upper bounds on the makespan of the
plan), they face two problems: (1) SAT and CSP encodings based on one variable
per time point, as normally used, become too large to handle for large planning
horizons; and (2) the constraint that requires the goals to be true at the planning
horizon becomes ineffective when the horizon is set too high.

In cpt the first is not a problem because, being a temporal planner, cpt
uses temporal rather than boolean encodings; i.e. for each action in the domain,
a single variable represents the starting time of the action in the plan. Thus, the
use of a large bound on the admissible makespan of plans has a direct effect on
the upper bounds of the temporal variables but not in their number.

cpt, on the other hand, does not escape from Problem 2: with a large bound
on the makespan, the search becomes less constrained and focused, and even
problems that are solved backtrack free with the optimal bound are not solved
at all after thousands of backtracks when a larger bound is used instead. In this
work, we tackle this problem by extending the inferential capabilities of cpt so
that it relies less on inferences drawn from the bounding constraint and more on
domain-independent inferences not captured by cpt. The new version of cpt,
that we call ecpt, does simple but more extensive reasoning, making use and
adapting techniques like landmarks [13, 14] and distances [15] among others.

The paper is organized as follows. We first review the cpt planner, discuss
its strength as an optimal planner and its weakness as a suboptimal planner, and



introduce extensions of the inferential machinery of cpt that render the search
backtrack-free over a wide range of domains. We then evaluate the resulting
planner, ecpt, and discuss implications and open ends.

2 CPT

cpt is a domain-independent temporal planner that combines a branching scheme
based on Partial Order Causal Link (POCL) Planning with powerful and sound
pruning rules implemented as constraints [8]. The key novelty in cpt in relation
to other formulations [7, 16, 17] is the ability to reason about supports, prece-
dences, and causal links involving actions that are not in the plan. In this way,
cpt can prune the start time and supports of actions that are not yet in the
plan, rule out actions from the plan, detect failures early on, etc. The inferences
in cpt are supported by a convenient representation of POCL plans in terms of
variables and constraints. For example, for each action a in the domain there is
a variable T (a) that represents the starting time of a, and for each precondition
p of a, a variable S(p, a) that represents the supporter of precondition p of a.
A causal link a′[p]a is thus represented by the constraint S(p, a) = a′, while its
negation is represented by the constraint S(p, a) 6= a′ which means that a′ can-
not produce p for a, i.e. the causal link a′[p]a is forbidden. Unlike other POCL
planners based on constraints however, [18–21], cpt represents and reasons with
all these variables, whether or not the action a is part of the current plan.

cpt uses a simple extension of the Strips language that accommodates con-
current actions with integer durations. A temporal planning problem is a tuple
P = 〈A, I, O, G〉 where A is a set of ground atoms, I ⊆ A and G ⊆ A represent
the initial and goal situations, and O is the set of ground Strips operators, each
with precondition, add, and delete list pre(a), add(a), and del(a), and duration
dur(a). As is common in POCL planning, there are also the dummy actions
Start and End with zero durations, the first with an empty precondition and
effect I; the latter with precondition G and empty effects. As in graphplan
[22], two actions a and a′ interfere when one deletes a precondition or positive
effect of the other. cpt follows the simple model of time in [23] where interfering
actions cannot overlap, and produces valid plans with minimum makespan.

The basic formulation of the cpt planner can be described in four parts:
preprocessing, variables, constraints, and branching. After the preprocessing, the
variables are created and the constraints are asserted and propagated. If an
inconsistency is found, no valid plan for the problem exists. Otherwise, the con-
straint T (End) = B for the bound B on the makespan, set to the earliest possible
starting time of the action End (i.e.; B = Tmin(End) which is determined by
preprocessing, see below), is asserted and propagated. The branching scheme
then takes over and if no solution is found, the process restarts by retracting
the constraint T (End) = B and replacing it with T (End) = B + 1 (1 being
the smallest time unit). The search is then restarted from scratch with the new
bound, and this is repeated until a solution is found. For simplicity, we follow
[8] and assume that no action in the domain can be done more than once in



the plan. This restriction is removed in the last version of cpt, which is the one
that we use, that introduces a distinction between action types and tokens. Such
details, however, reported in [12], are not needed here and are omitted.

2.1 Preprocessing

In the preprocessing phase, cpt computes the heuristic values h2
T (a) and h2

T ({p, q})
for each action a ∈ O and each atom pair {p, q} as in [24]. The values provide
lower bounds on the times to achieve the preconditions of a and the pair of atoms
p, q, from the initial situation I. The (structural) mutexes (pairs of atoms that
cannot be true in a world situation) are then identified as the pairs of atoms p, q
for which h2

T ({p, q}) = ∞. An action a is said to e-delete an atom p when either
a deletes p, a adds an atom q such that q and p are mutex, or a precondition r
of a is mutex with p and a does not add p. In all cases, if a e-deletes p, p is false
after doing a; [25]. Finally, Tmin(End) = max{p,q}⊆G h2

T ({p, q}).
In addition, the simpler heuristic h1

T is used for defining distances between
actions [15]. For each action a ∈ O, the h1

T heuristic is computed from an initial
situation Ia that includes all facts except those that are e-deleted by a. The
distances dist(a, a′) are then set to the resulting h1

T (a′) values. These distances
encode lower bounds on the slack that must be inserted between the completion
of a and the start of a′ in any legal plan in which a′ follows a. They are not
symmetric in general and their calculation, which remains polynomial, involves
the computation of the h1

T heuristic |O| times.

2.2 Variables and Domains

The state of the planner is given by a collection of variables, domains, and
constraints. As emphasized above, the variables are defined for each action a ∈
O and not only for the actions in the current plan. Moreover, variables are
created for each precondition p of each action a as indicated below. The domain
of variable X is indicated by D[X] or simply as X :: [Xmin, Xmax] if X is a
numerical variable. The variables, their initial domains, and their meanings are:

– T (a) :: [0,∞] encodes the starting time of each action a, with T (Start) = 0
– S(p, a) encodes the support of precondition p of action a with initial domain

D[S(p, a)] = O(p) where O(p) is the set of actions in O that add p
– T (p, a) :: [0,∞] encodes the starting time of S(p, a)
– InP lan(a) :: [0, 1] indicates the presence of a in plan; InP lan(Start) =

InP lan(End) = 1 (true)

In addition, the set of actions in the current plan is kept in the variable Steps;
i.e., Steps = {a | InP lan(a) = 1}. Variables T (a), S(p, a), and T (p, a) associated
with actions a which are not either in or out of the current plan (i.e., actions
for which the InP lan(a) variable is not set to either 0 or 1 yet) are conditional
in the following sense: these variables and their domains are meaningful only
under the assumption that they will be part of the plan. In order to ensure this
interpretation, some care needs to be taken in the propagation of constraints as
explained in [8].



2.3 Constraints

The constraints correspond basically to disjunctions, rules, and precedences, or
their combination. Temporal constraints are propagated by bounds consistency
[26]. The constraints apply to all actions a ∈ O and all p ∈ pre(a); we use δ(a, a′)
to stand for dur(a) + dist(a, a′).

– Bounds: For all a ∈ O, T (Start)+δ(Start, a) ≤ T (a) and T (a)+δ(a,End) ≤
T (End)

– Preconditions: Supporter a′ of precondition p of a must precede a by an
amount that depends on δ(a′, a):

T (a) ≥ min
a′∈D[S(p,a)]

(T (a′) + δ(a′, a))

T (a) ≥ T (p, a) + min
a′∈D[S(p,a)]

δ(a′, a)

T (a′) + δ(a′, a) > T (a) → S(p, a) 6= a′

– Causal Link Constraints: for all a ∈ O, p ∈ pre(a) and a′ that e-deletes
p, a′ precedes S(p, a) or follows a

T (a′)+dur(a′)+ min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a) ∨ T (a)+δ(a, a′) ≤ T (a′)

– Mutex Constraints: For effect-interfering a and a′3

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

– Support Constraints: T (p, a) and S(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

T (p, a) 6= T (a′) → S(p, a) 6= a′

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

2.4 Branching

As in POCL planning, branching in cpt proceeds by iteratively selecting and
fixing flaws in non-terminal states σ, backtracking upon inconsistencies. A state
σ is given by the variables, their domains, and the constraints involving them.
The initial state σ0 contains the variables, domains, and constraints above, along
with the bounding constraint T (End) = B where B is the current bound on the
makespan, which in the optimal setting is set to a lower bound and is then
increased until a plan is found. A state is inconsistent when a non-conditional
variable has an empty domain, while a consistent state σ with no flaws is a goal
state from which a valid plan P with bound B can be extracted by scheduling
the in-plan variables at their earliest starting times.

The definition of ‘flaws’ parallels the one in POCL planning expressed in
terms of the temporal and support variables, with the addition of ‘mutex threats’:
3 Two actions are effect-interfering in cpt when one deletes a positive effect of the

other, and neither one e-deletes a precondition of the other.



– Support Threats: a′ threatens a support S(p, a) when both actions a and
a′ are in the current plan, a′ e-deletes p, and neither Tmin(a′) + dur(a′) ≤
Tmin(p, a) nor Tmin(a) + dur(a) ≤ Tmin(a′) hold,

– Open Conditions: S(p, a) is an open condition when |D[S(p, a)]| > 1 holds
for an action a in the plan,

– Mutex Threats: a and a′ constitute a mutex threat when both actions are in
the plan, they are effect-interfering, and neither Tmin(a)+dur(a) ≤ Tmin(a′)
nor Tmin(a′) + dur(a′) ≤ Tmin(a) hold.

Flaws are selected for repair in the following order: first Support Threats (ST’s),
then Open Conditions (OC’s), and finally Mutex Threats (MT’s). ST’s and
MT’s are repaired by posting precedence constraints, while OC’s are repaired by
choosing a supporter, as usual in POCL planning.

3 eCPT

cpt is an optimal temporal planner with good performance which is competitive
with the best SAT parallel planners when actions have uniform durations [8].
At the same time, for non-optimal planning, cpt has the advantage that the
size of the encodings does not grow with the bound; indeed the bound in cpt
enters only through the constraint T (End) = B, which affects the domain upper
bounds of the variables but not their number. In spite of this, however, cpt does
not make for a good suboptimal planner, because like SAT and CSP planners
it still relies heavily on the bounding constraint which becomes ineffective for
large values of B.

Figure 1 shows the performance of cpt for the Tower-n problem for several
values of n and several horizons B. Tower-n is the problem of assembling a
specific tower of n blocks which are initially on the table. This is a trivial problem
for people, but as shown in [8], it is not trivial for most optimal planners. cpt,
however, solves this problem optimally backtrack free for any value of n. As the
figure shows, however, the times and the number of backtracks increase when
the horizon B is increased above the optimal bound, and for large values of B,
cpt cannot solve these problems after thousands of seconds and backtracks.

The figure also shows the performance of ecpt, the extension of cpt de-
scribed in this paper. It can be seen that while the performance of cpt degrades
with the increase of the bound B, the performance of ecpt remains stable, and
actually backtrack free for the different values of B. ecpt exploits the flexibility
afforded by the Constraint-Programming formulation underlying cpt, extending
it with inferences that do not rely as much on the bound, and which produce a
backtrack-free behavior across a wide range of domains. In this section we focus
on such inferences.

3.1 Impossible Supports

Many supports can be eliminated at preprocessing avoiding some dead-ends
during the search. For example, the action a′ = putdown(b1) can never support



 0.1

 1

 10

 100

 1000

 20  40  60  80  100  120  140  160  180  200

Ti
m

e 
(s

ec
on

ds
)

Bound

n=5, eCPT
n=5, CPT
n=10, eCPT
n=10, CPT
n=15, eCPT
n=15, CPT
n=20, eCPT
n=20, CPT

Fig. 1. Performance of cpt and ecpt over Tower-n for various numbers of blocks n
and bounds B. Curves that diverge correspond to cpt; curves that remain stable to
ecpt.

the precondition p = handempty of an action like a = unstack(b1, b3). This is
because action a has another precondition p′ = on(b1, b3) which is e-deleted by
a′ (false after a′) and which then would have to be reestablished by another
action b before a. Yet it can be shown that in this domain, any such action b
e-deletes p and is thus incompatible with the causal link a′[p]a.

More generally, let dist(a′, p, a) refer to a lower bound on the slack between
actions a′ and a in any valid plan in which a′ is a supporter of precondition p
of a. We show that for some cases, at preprocessing time, it can be shown that
dist(a′, p, a) = ∞, and hence, that a′ can be safely removed from the domain of
the variable S(p, a) encoding the support of precondition p of a.

This actually happens when some precondition p′ of a is not reachable from
the initial situation that includes all the facts except those e-deleted by a′ and
where the actions that either add or delete p are excluded. The reason for this
exclusion is that if a′ supports the precondition p of a then it can be assumed
that no action adding or deleting p can occur between a′ and a (the first part
is the systematicity requirement [7]). By a proposition being reachable we mean
that it makes it into the so-called relaxed planning graph; the planning graph
with the delete lists excluded [27].

This simple test prunes the action putdown(b1) as a possible support of the
precondition handempty of action unstack(b1, b3), the action stack(b1, b3) as a
possible support of precondition clear(b1) of pickup(b1), etc.

3.2 Unique Supports

We say that an action consumes an atom p when it requires and deletes p.
For example, the actions unstack(b3, b1) and pickup(b2) both consume the atom
handempty. In such cases, if the actions make it into the plan, it can be shown
that their common precondition p must have different supports. Indeed, if an



action a deletes a precondition of a′, and a′ deletes a precondition of a, a and a′

are incompatible and cannot overlap in time according to the semantics. Then
either a must precede a′ or a′ must precede a, and in either case, the precondition
p needs to be established at least twice: one for the first action, and one for
the second. The constraint S(p, a) 6= S(p, a′) for pairs of actions a and a′ that
consume p, ensures this, and when one of the support variables S(p, a) or S(p, a′)
is instantiated to a value b, b is immediately removed from the domain of the
other variable.

3.3 Distance Boosting

The distances dist(a, a′) precomputed for all pairs of actions a and a′ provide a
lower bound on the slack between the end of a and the beginning of a′. In some
cases, this lower bound can be easily improved, leading to stronger inferences.
For example, the distance between the actions putdown(b1) and pickup(b1) is
0, as it is actually possible to do one action after the other. Yet the action
putdown(b1) followed by pickup(b1) makes sense only if some other action using
the effects of the first, occurs between these two, as when block b1 is on block
b2 but needs to be moved on top of the block beneath b2.

Let us say that an action a cancels an action a′ when 1) every atom added
by a′ is e-deleted by a, and 2) every atom added by a is a precondition of a′.
Thus, when a cancels a′, the sequence a′, a does not add anything that was not
already true before a′. For example, pickup(b1) cancels the action putdown(b1).

When an action a cancels a′, and there is a precondition p of a that is made
true by a′ (i.e., p is added by a′ and is mutex with some precondition of a′), the
distance dist(a′, p, a) introduced above becomes ∞ if all the actions that use an
effect of a′ e-delete p. In such case, as before, the action a′ can be excluded from
the domain of the S(p, a) variable. Otherwise, the distance dist(a′, a) can be
increased to minb[dist(a′, b)+dist(b, a)] with b ranging over the actions different
than a and a′ that either use an effect of a′ but do not e-delete p or do not use
necessarily an effect of a′ but add p (because a′ may be followed by an action c
before a that e-deletes p but only if there is another action b between c and a
that re-establishes p).

In this way, the distance between the actions putdown(a) and pickup(a) in
Blocks is increased by 2, the distance between sail(a, b) and sail(b, a) in Ferry
is increased by 1, etc. The net effect is similar to pruning cycles of size two in
standard heuristic search. Pruning cycles of larger sizes, however, appears to be
more difficult in the POCL setting, although similar ideas can potentially be
used for pruning certain sequences of commutative actions.

3.4 Qualitative Precedences

Unlike traditional POCL planners, cpt reasons with temporal precedences of the
form T (a) + δ(a, a′) ≤ T (a′) rather than with qualitative precedences. cpt is a
CP-based temporal planner and such a choice arises naturally from the repre-
sentation used. Yet, the constraint propagation mechanism, bounds consistency,



is incomplete, and in a planning context, it is often too weak. In particular,
bounds consistency does not capture transitivity: namely from the constraints
A < B and B < C, it does not entail A < C. Indeed if the initial domains of
the variables A, B, and C is [1, . . . , 100], bounds consistency reduces the do-
mains to [1, . . . , 98], [2, . . . , 99], and [3, . . . , 100] respectively, which do not make
A < C true for all value combinations. Transitivities, however, are important
in planning, and thus ecpt incorporates, in addition to temporal precedences,
qualitative precedences of the form a ≺ a′ not limited to the actions a and a′

in the plan. Such qualitative precedences are obtained every time a temporal
precedence is asserted or entailed, and are kept closed under transitivity.4 When
a new qualitative precedence a ≺ a′ is found, the transitive closure is computed
as follows: if a belongs to the current partial plan, then for all a′′ such that
a′′ ≺ a, a′′ ≺ a′ is recorded; and if a′ belongs to the plan, then for all a′′ such
that a′ ≺ a′′, a ≺ a′′ is recorded. The same updates are incrementally performed
for an existing relation a ≺ a′ with a or a′ not in the plan, as soon as a or a′

make it into the plan.
Then two inference rules make use of these qualitative precedences for prun-

ing further the domains of the support variables:

– for an action a′ in the plan that adds a precondition p of an action a: if
a ≺ a′ then S(p, a) 6= a′

– for an action a′ that adds a precondition p of an action a and an action b in
the plan that e-deletes p: if a′ ≺ b and b ≺ a, then S(p, a) 6= a′

3.5 Action Landmarks

Like all POCL planners, cpt starts with a partial plan with two actions only:
Start and End. In many cases, however, it is possible to infer easily that certain
other actions must be in the plan as well. For example, if a block b1 must
be moved but is beneath two blocks b3 and b2 in that order, then the actions
unstack(b3, b2) and unstack(b2, b1) will have to be taken at some point, and
moreover, the first must precede the second. In ecpt we identify such necessary
actions and a partial order on them in a preprocessing step, following the idea
of landmarks introduced in [13], in the form presented in [14]. An action a is
a landmark if the action End is not reachable when the action a is excluded
from the domain (as mentioned above, an action a is reachable when it makes it
into the relaxed planning graph). Also, a landmark action a precedes a landmark
action b, when b is not reachable when the action a is excluded. Action landmarks
and the partial order on them are computed in the preprocessing step and are
included in the initial state of the planner along with the actions Start and End.
This involves the calculation of |O| relaxed planning graphs, one for each action
in the domain.
4 Temporal precedences are asserted as a result of the branching decisions correspond-

ing to support and mutex threats, and are inferred when either supports are asserted
or inferred, or when one of the disjuncts in a causal link or mutex constraint becomes
false.



3.6 Branching and Heuristics

ecpt retains the same branching scheme as cpt and the same ordering: it first
branches on support threats (ST’s), then on open conditions (OC’s), and finally
on mutex threats (MT’s). The heuristic for selecting the support threats and
open conditions however, is slightly different.

Support threats 〈a′, S(p, a)〉 are selected in ecpt minimizing Tmin(a), break-
ing ties by first minimizing Tmax(p, a), and then with the slack based criterion
used in cpt. Open supports S(p, a) are selected minimizing Tmax(p, a), breaking
ties minimizing slack(a′, a) where a′ is the producer of a in D[S(p, a)] with min
Tmin(a′). Also the constraint posted in the second case is S(p, a) = a′, and if
that fails, S(p, a) 6= a′.

4 Experimental Results

While our motivation behind the development of ecpt is to study empirically the
possibility of solving a wide variety of planning benchmarks with no search, we
report also results that are illustrative for assessing ecpt as either an optimal
or suboptimal planner in relation with state-of-the-art systems such as ff or
satplan04. ff [27] is a suboptimal, sequential planner winner of the 2nd Int.
Planning Competition, while satplan04 [9] is an optimal parallel planner winner
of the Optimal Track of the 4th and last Int. Planning Competition that relies
on the Siege SAT solver [28]. The instances and domains are all from the 2nd and
3rd Int. Planning Competitions [29, 30], and the results have been obtained using
a Pentium IV machine running at 2.8Ghz, with 1Gb of RAM, under Linux. The
time limit for each problem is 30 minutes, and all times include preprocessing.
Since ff and satplan04 cannot handle temporal domains, we consider only
the formulation in which all actions have unit duration. The bound B on the
makespan for suboptimal ecpt is then set to 200 which is well above the optimal
makespan in these benchmarks.

Table 1 shows for each domain, the total number of instances, the num-
ber of instances solved by ecpt, the number of instances solved backtrack free
(and in parenthesis, the max number of backtracks over problems solved with
backtracks), and the max number of nodes generated (in POCL planning, this
number is different than the number of actions in the plan). For illustration
purposes, the number of instances solved and the corresponding max number of
nodes generated are reported also for ff [27]. As it can be seen, ecpt solves 339
out of 350 instances, 336 of them backtrack free, including all the instances of
Blocks, Ferry, Logistics, Gripper, Miconic, Rovers and Satellite (the 11 unsolved
instances are actually all caused by memory limitations in the Claire language
rather than time). This is quite remarkable; these are instances that were chal-
lenging until very recently. ecpt solves actually 3 instances more than ff over
this set of problems, ecpt having best relative coverage in Blocks and DriverLog,
and ff in Depots and Zeno. In the last domain from IPC-3, Freecell, ff solves
more instances than ecpt, which no longer exhibits a backtrack-free behavior.



Table 1. eCPT vs. FF: Coverage over various simple domains, showing # problems
solved, backtrack free (max # backtracks), and max # of nodes generated.

eCPT FF
#pbs solved b.-free (max b.) max nd solved max nd

blocks 50 50 50 (0) 275 42 146624
depots 20 18 16 (4) 285 19 166141
driver 20 17 16 (5) 176 15 4657
ferry 50 50 50 (0) 1176 50 201
gripper 50 50 50 (0) 201 50 200
logistics 50 50 50 (0) 273 50 2088
miconic 50 50 50 (0) 131 50 76
rovers 20 20 20 (0) 207 20 3072
satellite 20 20 20 (0) 249 20 5889
zeno 20 14 14 (0) 70 20 933

This domain, however, causes difficulties to ff as well due to the presence of
dead-ends [31].

Not all the new inference rules are needed to generate the backtrack free
behavior in every domain; yet Impossible Supports appears to be critical for
Depots, Distance Boosting for Depots, DriverLog and Ferry, Qualitative Prece-
dences for all domains except Blocks, and Action Landmarks for Blocks. In addi-
tion, often some disjunctions of rule sets are critical as well. For example, while
either Qualitative Precedences or Unique Supports can be removed in Blocks
without generating additional backtracks, the removal of both sets of rules does
cause backtracks. Also, the modified heuristics are crucial for all domains.

Information about the runtime of ecpt over the various domains can be seen
in Figure 2, with Table 2 providing additional details for selected instances in
comparison with ff. As it can be seen, the runtimes for ecpt tend to scale
well although they do not compete with the runtimes of ff (except for a few
Depots instances): ff generates many more nodes but does so faster. Plan quality
measured in the number of actions in the plan is better for ff in domains like
Logistics or DriverLog, which may have to do with the fact that ecpt computes
concurrent plans.

The scatter plots in Figures 3 and 4 compare ecpt respectively with cpt
and satplan04 as optimal planners; dots above (below) the diagonal indicate
instances where ecpt is faster (resp. slower), while dots on the right (top) border
are unsolved by ecpt (resp. the other planner). ecpt solves 207 out of the 350
instances, while cpt and satplan04 solve 179 and 180 instances respectively.
ecpt generates many fewer nodes than cpt, often running orders-of-magnitude
faster (although not always so as the additional overhead does not always pay
off).

As suboptimal planners, ecpt solves 339 out of the 350 instances, while cpt
solves only 66 instances, with runtimes often above 1000 seconds, resulting usu-
ally in poor plans. This is because, as mentioned above, cpt behavior degrades
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Fig. 2. eCPT running times on all domains.

Table 2. eCPT vs. FF: further details on a few instances.

CPU time (sec.) Actions Nodes
eCPT FF eCPT FF eCPT (bkts) FF

bw-ipc48 59.51 - 74 - 281 (0) -
bw-ipc49 78.37 - 80 - 282 (0) -
bw-ipc50 85.09 0.02 88 86 235 (0) 195

log-ipc48 50.56 0.20 164 142 261 (0) 515
log-ipc49 51.54 0.50 176 171 273 (0) 1252
log-ipc50 50.39 0.43 161 154 245 (0) 1147

depots06 66.23 - 68 - 160 (0) -
depots07 1.27 0.01 28 25 68 (0) 142
depots08 13.13 579.89 75 43 206 (0) 172478

driver14 5.40 0.09 48 45 75 (0) 1209
driver15 39.91 0.03 69 44 130 (0) 161
driver16 147.15 - 107 - 163 (5) -

quickly as the bound on the makespan is pushed above the optimal value leaving
the problems unconstrained and the search unfocused.

5 Discussion

The task of solving simple planning problems in a domain-independent way with
no search, by performing low polynomial operations in every node, is a crisp and
meaningful goal, which may yield insights that an exclusive focus on performance
may not, like the identification of broader tractable planning fragments, and
the process by which people actually plan. In this work we have shown that a
suitable extension of the temporal planner cpt achieves this behavior over a wide
range of benchmark domains. The new constraints and inference mechanisms
have been obtained from observing the behavior of cpt over various domains.



 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

C
P

T 
ru

nn
in

g 
tim

e 
(s

ec
on

ds
)

eCPT running time (seconds)

blocks
depots
driver
ferry
gripper
logistics
miconic
rovers
satellite
zeno

Fig. 3. eCPT vs. CPT for optimal planning.

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

S
A

TP
LA

N
04

 ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

eCPT running time (seconds)

blocks
depots
driver
ferry
gripper
logistics
miconic
rovers
satellite
zeno

Fig. 4. eCPT vs. SATPLAN04 for optimal planning.

The fact that this fine grain analysis is possible, and that the results can be
easily incorporated into the planner, is a clear benefit of the CP formulation,
which thus provides a way for making use of (human) domain-specific analysis
for improving the performance of a domain-independent planner. We have also
empirically evaluated the resulting planner ecpt, as a suboptimal and optimal
planner, and have shown significant gains over cpt.

The finding that a few inference rules is all that it takes to render the search
backtrack free in domains which until recently were considered challenging for
planners, bears some similarity with the empirical observation in [2] that a sim-
ple domain-independent heuristic function can effectively guide the search for
plans in many domains, an idea exploited in many current planners. The two de-
vices for taming the search, however, are different: heuristic estimators provide
numeric information to weight alternatives, the inference rules provide struc-
tural information to discard alternatives. We believe that it should be possible



to prove some domains backtrack free for ecpt, and in this way identify new ab-
stract classes of tractable problems. Current classes, as defined in [3–6], remain
somewhat narrow, and do not account for the tractability of existing bench-
marks [32]. In the future, we want to investigate the gap between the empirical
results and current theoretical tractability accounts, and explore the possibility
of obtaining the behavior of ecpt from a general inference engine and not a
customized implementation.

Last but not least, we have recently studied in detail the traces for some of
the problems considered, and noticed that in several cases, some of the decisions
taken are the result of ties. Since we are interested in making the planning process
transparent such ties pose a problem for justifying the decisions that are taken.
We decided then to explore all the branches that are tied, rather than selecting
the first branch only, hoping that all tied branches would lead to backtrack-free
solutions. We discovered however that in some problems, this was not the case;
namely, in some cases the way in which the code was breaking ties mattered, and
in such cases, this had to do, for example, with the order of the actions in the
PDDL file. Our next goal is thus not only to extend the range of domains that
are solved backtrack-free but to do so in a robust way, meaning that decisions
that are found to be equally good according to the criteria that are explicit in
eCPT, should all lead equally well to the solution (namely backtrack free). This
requires refining the rules and the selection criterion in eCPT still further. The
most recent results that we have obtained, suggest that this is possible too.
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