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Abstract. We introduce a non-admissible heuristic for planning with
action costs, called the set-additive heuristic, that combines the benefits
of the additive heuristic used in the HSP planner and the relaxed plan
heuristic used in FF. The set-additive heuristic hs

a is defined mathemati-
cally and handles non-uniform action costs like the additive heuristic ha,
and yet like FF’s heuristic hFF, it encodes the cost of a specific relaxed
plan and is therefore compatible with FF’s helpful action pruning and its
effective enforced hill climbing search. The definition of the set-additive
heuristic is obtained from the definition of the additive heuristic, but
rather than propagating the value of the best supports for a precon-
dition or goal, it propagates the supports themselves, which are then
combined by set-union rather than by addition. We report then empiri-
cal results on a planner that we call FF(hs

a) that is like FF except that
the relaxed plan is extracted from the set-additive heuristic. The results
show that FF(hs

a) adds only a slight time overhead over FF but results
in much better plans when action costs are not uniform.

1 Motivation

The additive heuristic used in HSP [1] and the relaxed plan heuristic used in
FF [2] are two of the best known heuristics in classical planning. While both
are based on the delete-relaxation, the latter produces more accurate estimates
along with information in the form of ’helpful actions’ that is exploited in the
’enforced hill climbing’ search, where non-helpful actions are ignored. Better esti-
mates, helpful action pruning, and enforced hill climbing search are actually the
three reasons that make FF a more effective planner than HSP [2]. The additive
heuristic used in HSP, however, has some advantages as well. In particular, it is
defined mathematically rather than procedurally, resulting in a formulation that
handles non-uniform actions costs.

In this work, we introduce a new non-admissible heuristic for planning that
we call the set-additive heuristic, that combines the benefits of the additive and
relaxed plan heuristics. The set-additive heuristic hs

a is defined mathematically



and handles non-uniform action costs like the additive heuristic ha, and yet
like FF’s heuristic hFF, it encodes the cost of a specific relaxed plan and thus
is compatible with FF’s helpful action pruning and its effective enforced hill
climbing search. The motivation is similar to the works in [3, 4] which also aim
to make the FF planner sensitive to cost information, yet rather than modifying
the planning graph construction or extraction phases to take action costs into
account, we modify the cost-sensitive additive heuristic to yield relaxed plans.

The paper is organized as follows. We first review the cost model and the
definitions of the additive heuristic and the planning graph heuristic used by FF.
We then introduce the new set-additive heuristic and present empirical results.

2 Planning Model and Heuristics

We consider planning problems P = 〈F, I, O, G〉 expressed in Strips, where F is
the set of relevant atoms or fluents, I ⊆ F and G ⊆ F are the initial and goal
situations, and O is a set of (grounded) actions a with preconditions, add, and
delete lists Pre(a), Add(a), and Del(a) respectively, all of which are subsets of
F .

For each action a ∈ O, there is also a non-negative cost cost(a). In classical
planning this cost is assumed to be positive and uniform for all actions, normally
equal to 1. In such a case, the cost of a plan is given by the number of actions
in the plan. More generally, we take the cost cost(π) of a plan π = a0, . . . , an to
be

cost(π) =
∑

i=0,n

cost(ai)

The search for plans is guided by heuristics that provide an estimate of
the cost-to-go that are extracted automatically from the problem encoding P .
Two of the most common heuristics are the additive heuristic used in the HSP
planner [1] and the relaxed plan heuristic used in FF. Both are based on the
delete-relaxation P+ of the problem, and they both attempt to approximate the
optimal delete-relaxation heuristic h+ which is well-informed but intractable.
Heuristics that are not based on the delete-relaxation and are admissible are
used in Graphplan [5] and HSPr* [6]. These heuristics, however, are not as
informed as their non-admissible counterparts.

We review some of these heuristics below. In order to simplify the definition
of some of the heuristics, we introduce in some cases a new dummy End action
with zero cost, whose preconditions G1, . . . , Gn are the goals of the problem,
and whose effect is a dummy atom G. In such cases, we will obtain the heuristic
estimate h(s) of the cost from state s to the goal, from the estimate h(G; s) of
achieving the ’dummy’ atom G from s.

3 The Additive Heuristic

Since the computation of the optimal delete-free heuristic h+ is intractable,
HSP introduces a polynomial approximation where all subgoals are assumed to



be independent in the sense that they can be achieved with no ’side effects’. This
assumption is false normally (as is that of the delete-relaxation) but results in
a simple heuristic function ha(s) = ha(G; s) that can be computed efficiently in
every state s visited in the search:

ha(p; s) =
{

0 if p ∈ s
mina∈O(p)[ha(a; s)] otherwise

where ha(p, s) stands for an estimate of the cost of achieving the atom p from
s, O(p) is the set of actions in the problem that add p, and

ha(a; s) = cost(a) +
∑

q∈Pre(a)

ha(q; s)

stands for the cost of applying the action a after achieving its preconditions.
The additive heuristic, as its name implies, makes the assumption that the

cost of achieving a set of atoms is equal to the sum of the costs of achieving each
of the atoms separately. When this assumption is true, either because action
preconditions and subgoals can be achieved with no side effects, or because the
goal and action preconditions contain one atom at most, ha is equal to h+, and
hence the additive heuristic is optimal in the delete relaxation. Most often this
is not the case, yet as shown early in [7] and later in the HSP planner [1], the
additive heuristic ha can often guide the search for plans fairly well. Versions of
the additive heuristic appear also in [8, 3, 9], where the cost of joint conditions
in action preconditions or goals is set to the sum of the costs of each condition
in isolation. The additive heuristic ha for classical planning is obtained simply
by setting the action costs cost(a) all to 1 (except for the ’dummy’ End action).

4 The Relaxed Planning Graph Heuristic

The planner FF improves HSP along two dimensions: the heuristic and the
basic search algorithm. Unlike ha, the heuristic hFF used in FF makes no
independence assumption for approximating h+, instead computing one plan for
P+ which is not guaranteed to be optimal. This is done by a Graphplan-like
procedure [5], which due to the absence of deletes, constructs a planning graph
with no mutexes, from which a plan πFF(s) is extracted backtrack-free [2]. The
heuristic hFF(s) is then set to |πFF(s)|. The basic search procedure in FF is
not WA* as in HSP but (enforced) hill-climbing (EHC), in which the search
moves from the current state s to a neighboring state s′ with smaller heuristic
value by performing a breadth first search. This breadth first search is carried
out with a reduced branching factor where actions a that are not found to be
’helpful’ in a state s are ignored. The ’helpful actions’ in a state s are the actions
applicable in s that add a relevant subgoal p, as judged from the computation
of the relaxed plan πFF(s). The more accurate relaxed plan heuristic, along with
the reduced branching factor in the breadth first search that follows from the
exclusion of non-helpful actions, make the FF planner scale up better than HSP
[2].



An advantage of HSP over FF, however, is the ability to naturally take into
account non-uniform actions costs. While the additive heuristic ha extends nat-
urally to such cases, the relaxed plan extraction procedure and the layered plan-
ning graph construction on which it is based do not. Some recent attempts to
modify the planning graph construction in order to take cost information into
account can be found in [3, 4]. Here we take a different approach that avoids
planning graphs entirely, relying instead on a simple modification of the addi-
tive heuristic to compute relaxed plans.

The new set-additive heuristic modifies the formulation of the additive heuris-
tic slightly, so that rather than expressing numbers ha(p; s) it expresses ’relaxed
plans’ πa(p; s), i.e., sets of actions that can be ordered into plans for p from the
state s in the delete-relaxation P+.

5 The Set-Additive Heuristic

The definition of the additive heuristic can be rewritten as

ha(p; s) def=
{

0 if p ∈ s
ha(ap; s) otherwise

where
ap = argmina∈O(p)ha(a; s)

is the best supporting action for p in s, and h(a; s) is

ha(a; s) = cost(a) +
∑

q∈Pre(a)

ha(q; s)

In the additive heuristic, the value of the best supporter ap of p in s, ha(ap; s),
is propagated into the heuristic value of p, ha(p; s). The set-additive heuristic
can be understood in terms of a small change: rather than propagating the value
ha(ap; s) of the best supporter ap of p, it propagates the supporter ap itself. In
addition, unlike values, such supports are not combined by sums but by set-
unions, resulting in a function πa(p; s) that represents a set of actions, which in
analogy to ha(p; s) is defined as:3

πa(p; s) =
{
{} if p ∈ s
πa(ap; s) otherwise

where
ap = argmina∈O(p)Cost(πa(a; s))

πa(a; s) = {a}
⋃

{∪q∈Prec(a) πa(q; s)}

3 The value of the set-additive heuristic hs
a(s), unlike the value of the normal addi-

tive heuristic, depends on the way ties are broken. We assume that among several
supports ap with the same costs Cost(ap; s), the one containing fewer actions, i.e.,
smallest |πa(ap; s)|, is preferred.



Cost(πa(a; s)) =
∑

a′∈πa(a;s)

cost(a′)

That is, the best supporter ap for p is propagated into p, and supports for
joint preconditions and goals are combined by set-union. The best-supporter is
selected in turn as the action ap for which the ’plan’ made up of the supports
of each of its preconditions along with the action itself has minimum cost. The
set-additive heuristic hs

a(s) for the state s is then defined as

hs
a(s) = Cost(πa(G; s))

While πa(p; s) is a set and not a sequence of actions, its definition ensures
that the actions it contains can be ordered into an action sequence that is a plan
for p in the relaxed problem P+ from state s. Indeed, one such parallel plan
can be obtained by scheduling in a ’first layer’ A0, the actions a in πa(p; s) with
empty supports; i.e., with πa(a; s) = {}, then in a ’second layer’, the actions a
with supports in the first layer only, i.e., with πa(a; s) ⊆ A0, and so on. Within
each layer, the actions can be serialized in any way as there are no deletes in
P+. As a result, and provided that there is a (relaxed) plan for each atom p in
the delete-relaxation P+,4 we have that:

Proposition 1. πa(p; s) represents a relaxed plan for p from s.

This means that πa(G; s) for the dummy goal G can play the role of the
relaxed plan in FF in place of the planning graph extraction procedure that is
not sensitive to cost information. The rest of FF’s machinery, such as helpful
actions, enforced hill climbing, and so on, can be kept in place. We will call the
resulting planner FF(hs

a).
Notice that since πa(G; s) is a set of actions, there are no action duplicates

in the corresponding relaxed plan. This property is true also of the relaxed plan
computed by FF, following from the NO-OP first heuristic [2].5

We have implemented the set-additive heuristic hs
a on top of the code that

computes the normal additive heuristic ha in HSP, which is a Bellman-Ford algo-
rithm that solves shortest-path problems [10–12]. For the set-additive heuristic,
the label of a ’node’ p in the graph must represent both the set of actions πa(p; s)
and its cost Cost(πa(p; s)). The sets of actions are represented as sparse, ordered
lists so that the union of two such sets is done in time linear in the sum of their
sizes. In the additive heuristic, the analogous operation is a sum which is cer-
tainly cheaper, yet as the experiments below show the computational cost of
these unions is not prohibitive.

4 This condition is easily enforced by adding ’dummy’ actions a′
p with very high cost

that add p for each p. Thus, if h(p; s) is h(a′
p), it means that there is no plan for

achieving p from s in the relaxation.
5 No action duplicates are needed in plans for the delete-relaxation of Strips problems.

For problems involving conditional effects, however, this is no longer true. For ap-
plying the set-additive heuristic in such cases, conditional effects must be compiled
exactly or approximately into action preconditions.



6 Additive and Set-Additive Heuristics Compared

The normal additive heuristic can be understood as the bag or multiset additive
heuristic, which is exactly like the set-additive heuristic above, but with the ex-
pressions πa(p; s) combined as bags or multisets rather than sets [13]. A bag or
multiset is a collection with repetitions, where each element can have a multiplic-
ity greater than 1. E.g., in the the multiset A = {a, a, a, b, b, c}, the element a has
multiplicity 3, b has multiplicity 2, and c has multiplicity 1 (all other elements
have multiplicity 0). If B = {a, c} is another multiset, then the multi-set union
of A and B, is {a, a, a, a, b, b, c, c, }. If πa(p; s) is a multiset, then it may include
duplicate actions that lead to overcounting when the costs of each of the actions
in the multiset are added up. From this perspective, the set-additive heuris-
tic eliminates the overcounting that arises from the multiset-additive heuristic,
which is equivalent to the normal additive heuristic, by replacing multisets by
sets. The result is a heuristic that like hFF does not ’overcount’ [2] and that like
ha is sensitive to cost information.

7 The FF(hs
a) planner

The FF(hs
a) planner analyzed below is FF but with the relaxed plan πFF(s)

computed from the relaxed planning graph replaced by the one computed with
the set-additive heuristic: πa(G; s). The resulting heuristic hs

a(s) is thus cost-
sensitive, and furthermore, remains optimal in problems in which the normal
additive heuristic is optimal as well, such as when preconditions and goals involve
one atom at most. Two other small changes have been made to take action costs
into account in the enforced hill-climbing procedure (EHC).

First, while a single step of EHC in FF ends as soon as a state s′ is found by
breadth-first search from s such that h(s′) < h(s), in FF(hs

a) this is not true in
the first level of the search. Instead, all states s′ resulting from applying a helpful
action a in s are evaluated, and among those for which h(s′) < h(s) holds, the
action minimizing the expression cost(a) + h(s′) is selected.6

Second, while helpful actions in FF are defined as H(s) = {a ∈ A|add(a) ∩
G1 6= ∅}, where G1 denotes the set of atoms in the first layer of the planning
graph arising from the extraction of the plan πFF(s), in FF(hs

a), G1 is defined
as the set of atoms p achievable in one step, i.e., |πa(p; s)| = 1, such that p is a
precondition of some action in the relaxed plan πa(G; s).

8 Experimental Results

We tested three heuristics in combination with two search algorithms. The
heuristics are the additive heuristic ha, the set-additive heuristic, and FF’s
6 Actually, when an action a maps s into a state s′ in the first level such that h(s′) =

h(s) − cost(a) and the size of the computed relaxed plan is decreased by 1, such an
action is selected right away.
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Fig. 1: Plan costs with EHC Search: FF, FF-C, and FF(hs
a).

heuristic hFF. The search algorithms are EHC and WA* with evaluation function
f(n) = g(n)+Wh(n) with W = 5. The only combination we did not try was ha

with EHC, as EHC requires the notion of a relaxed plan that the heuristic ha

does not provide.
The five combinations were implemented on top of Metric-FF, an extension of

the FF planner that handles numeric fluents [14]. This is because the current ac-
cepted syntax for non-uniform action costs is expressed through numeric fluents
and metric expressions that Metric-FF can handle. Numeric fluents, however,
are only used to encode such cost information, and once the cost information
is obtained from the input, numeric fluents are eliminated from the problem,
leaving a boolean planning problem with cost information.

Experiments were performed with six domains with non-uniform action costs
and five STRIPS domains. Four of these were versions of the domains Satellite,
Rovers, Depots, and Zenotravel from the Third International Planning Compe-
tition (IPC3), modified as discussed above. The fifth domain, Driverlog, needed
no modification as no numeric variables occur in preconditions of actions or
goals. The sixth domain, Costgrid, is a simple grid domain in which movements
between squares are randomly assigned costs between 0 and 100. It is possible to



prove that in such a domain, the additive and set-additive heuristics are optimal
as preconditions and goals involve a single atom. The five STRIPS domains used
were the STRIPS versions of the five IPC3 domains.

All experiments were run on a grid consisting of 76 nodes, each a dual-
processor Xeon “Woodcrest” dual core computer, with a clock speed of 2.33
GHz and 8 Gb of RAM. Execution time was limited to 1,800 seconds.

FF vs. FF(hs
a): Quality. EHC with the set-additive heuristic often yields better

plans than with FF’s heuristic. This can be seen from the curves in Figure 1 that
display plan costs over four domains. The differences are significant in Satellite,
Zeno, and CostGrid, where we have found that the heuristic values computed
by the two heuristics in the initial state are also the most different. On the other
hand, the values produced by the two heuristics in Rovers, Depots, and Driverlog
are closer, leading to plans with similar costs.

FF vs. FF(hs
a): Time. FF(hs

a) often takes longer than normal FF. The reasons
are two: the overhead of propagating sets in the heuristic computation, and
the fact that the plans that FF(hs

a) finds are sometimes longer but with better
overall cost. The times for the four domains above are shown in Figure 2. This
overhead, however, does not affect coverage: FF and FF(hs

a) in EHC mode solve
all 20 instances of Satellite, Rovers, Zenotravel, and Costgrid, and both fail only
in 2 of the 22 instances in Depots, and in 3 and 4 instances respectively of
Driverlog.

FF with Costs vs. FF(hs
a). Aside from the curves for FF and FF(hs

a), Fig-
ures 1 and 2 show a third curve. This curve, labeled FF-C, corresponds to the
combination of the modified EHC procedure used in FF(hs

a) with a version of
the FF heuristic that takes action costs into account. While hFF(s) is |πFF(s)|,
where πFF(s) is the relaxed plan computed by FF from s, the heuristic hc

FF(s)
used in FF-C is the result of adding up the cost of the actions in πFF(s). As it
can be seen from the curves, FF-C improves FF in terms of plan quality in a
few cases but not as often as FF(hs

a) and not as much. This is because the re-
laxed plan extraction remains cost-insensitive. At the same time, FF-C is slower
than FF, which by ignoring action costs completely, searches for the goal more
greedily.

Heuristics in WA* Search. When the heuristics ha, hs
a, and hFF are used in

the context of the WA* search, the first two heuristics do better than the latter
one. The coverage of the three heuristics is shown in Table 1, where the additive
heuristic ha does slightly better than the set-additive heuristic hs

a (because it
is cheaper to compute), and both do better than hFF. On the other hand, the
set-additive heuristic with EHC solves many more problems than the additive
heuristic with WA*.

Uniform vs. Non-Uniform Costs. The heuristic values computed by hs
a and

hFF when costs are uniform are not necessarily equal, yet we have found them to
be very much alike over these domains, leading to plans with roughly the same
costs. We omit the corresponding graphs due to lack of space. This suggests



h Satellite Rovers Zenotravel Depots Driverlog Costgrid

ha 0 4 14 13 11 20

hs
a 0 4 11 13 9 20

hFF 0 5 8 10 6 20

Table 1: Coverage of the three heuristics combined with a WA* search. There are 20
problems in each domain except for Depots with 22.

that when costs are uniform, the overhead in the computation of the set-additive
heuristic does not pay off. For non-uniform costs, on the other hand, hs

a used
with EHC search appears to yield the best tradeoff.

9 Summary

We have introduced a new non-admissible heuristic for planning, the set-additive
heuristic, that combines the benefits of the additive and relaxed plan heuristics.
The motivation is similar to the work in [3, 4] which also aims to make the
FF planner sensitive to cost information, but rather than modifying the plan
graph construction or extraction phase to take action costs into account, we
have modified the cost-sensitive additive heuristic to yield relaxed plans. The
resulting formulation sheds light also on the normal additive heuristic, which
can now be as the multiset-additive heuristic, and suggests further refinements
that can result from the propagation of symbolic labels (supports) rather than
numbers in the basic formulation.
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