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Abstract

In this article, we review recent mathematical models and computational methods forthe processing of di�usion Magnetic
Resonance Images, including state-of-the-art reconstruction of di�usion models, cerebralwhite matter connectivity
analysis, and segmentation techniques. We focus on Di�usion Tensor Images (DTI) and Q-Ball Images (QBI).
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1. Introduction

Di�usion MRI is an exciting extension of MRI in-
troduced in the mid-1980s (Le Bihan and Breton, 1985;
Merboldt et al., 1985; Taylor and Bushell, 1985). It pro-
vides a unique and sensitive probe for the architecture
of biological tissues. The key idea behind di�usion MRI
is that water di�usion in structured tissues, such as the
brain's white matter, re
ects its architecture at a micro-
scopic scale. This is because molecular motion is favored
in directions aligned with �ber bundles and hindered in
the orthogonal orientations. Measuring, at each voxel, the
e�ect of water di�usion on the MR signal in a number of di-
rections provides exquisite insight into the local orientation
of �bers. Shortly after the �rst acquisitions of images char-
acterizing the anisotropic di�usion of water molecules in
vivo (Moseley et al., 1990; Osment et al., 1990), the Di�u-
sion Tensor (DT) formalism was introduced (Basser et al.,
1994). Di�usion Tensor Imaging (DTI) is an analytic
means to precisely describe the three-dimensional nature
of anisotropy in tissues. The di�usion tensor model encap-
sulates the average di�usion properties of water molecules
(inside a typical 1-3mm sized voxel), as the 3x3 covari-
ance matrix of a Gaussian distribution. DTI has been
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extensively used to study a wide range of neurological
disorders such as cerebro-vascular diseases, multiple scle-
rosis, Alzheimer's and Parkinson's disease, schizophrenia
and brain tumors. It has also been very useful for study-
ing brain development, e�ects of aging, and the structure
of anatomical and functional networks in brain substruc-
tures, such as the thalamus, striatum and various �ber
bundles. Tractography and connectivity mapping tech-
niques are at the core of many of these studies.
However, between one-third to two-thirds of imaging vox-
els in the human brain's white matter are thought to con-
tain multiple �ber bundle crossings (Behrens et al., 2007),
in which case the Di�usion Tensor model breaks down.
High Angular Resolution Di�usion Imaging (HARDI)
techniques (Tuch, 2002) such as Di�usion Spectrum Imag-
ing (DSI) (Callaghan et al., 1988; Wiegell et al., 2000) or
Q-Ball Imaging (QBI) (Tuch, 2004), have therefore been
proposed to overcome the limitations of the di�usion ten-
sor model and recover �ber crossing information. With
QBI, model-free mathematical approaches can be devel-
oped to reconstruct the angular pro�le of the di�usion
displacement probability density function (PDF) of water
molecules, known as the di�usion orientation distribution
function (ODF). The underlying �ber distribution (fODF)
can also be estimated, which is fundamental for tractog-
raphy.
The estimation of di�usion tensors or di�usion/�ber ODFs
is challenging given the complexity of the di�usion MRI
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data, the mathematical tools used to describe them and
the computational tools used to process them. Here we
address several di�erent theoretical and computational is-
sues that arise in processing di�usion MRI. Ultimately, the
goal is to recover the underlying �ber distribution so the
white matter architecture can be inferred with tractogra-
phy and segmentation methods. Therefore, we guide the
reader from local di�usion model reconstruction in Section
2, to tractography algorithms in Section 3, and �nally, to
�ber bundle segmentation methods, from DTI or QBI, in
Section 4.

2. Local Di�usion Models

To measure the molecular motion in the direction of a
given di�usion gradient g, the Stejskal-Tanner imaging se-
quence (Stejskal and Tanner, 1965) is commonly used and
relates the MR signal attenuation S(q; � ) to the statistical
properties of the net displacement vectorR by

S(q; � ) = S0

Z

R3
p(R j� )e� 2�i q T R dR = F [p(R j� )]; (1)

where S0 is a reference signal acquired with no di�usion
gradient, � is the molecular di�usion time, q = 
� g=2� is
the displacement reciprocal vector (with 
 the gyromag-
netic ratio of water protons and � the duration of the di�u-
sion gradients), andp(R j� ) is the ensemble average prop-
agator (EAP). S(q; � ) is thus expressed as the 3D Fourier
transform F of the EAP. This function is ultimately the
function we are looking to reconstruct in di�usion MRI. In-
tuitively, one has to sample the di�usion PDF along many
q vectors to be able to reconstruct the di�usion PDF. The
space of all possible 3Dq vectors is calledq-space. This is
the idea behind q-space imaging (Callaghan, 1991). If the
di�usion process is assumed to be Gaussian, the Stjeskal-
Tanner equation (1) boils down to

S(g; b) = S0e� bgT Dg ; (2)

where g is the unit vector q=jqj, b is the so-calledb-value
given by � jqj2 and D is the 3 dimensional di�usion tensor.
In this case, p takes the simple form

p(R j� ) =
1

p
(4�� )3jD j

e� R T D � 1 R
4� :

In contrast, HARDI acquisition schemes are model-free.
They do not make any assumption about the form of
the EAP but rather sample q-space along as many direc-
tions and q-magnitudes as possible, to reconstructp as
accurately as possible. Typically, there are two strate-
gies used in HARDI: 1) sampling of the wholeq-space
3D Cartesian grid and estimation of the EAP by in-
verse Fourier transformation (DSI), 2) single shell spher-
ical sampling and estimation of �ber distributions from
the di�usion/�ber ODF (QBI), Persistent Angular Struc-
ture (Jansons and Alexander, 2003) or Di�usion Orien-
tation Transform (Ozarslan et al., 2006). Recent work

(Khachaturian et al., 2007) has proposed to improve the
accuracy of QBI by fusing information from multiple q-
shells. In this section, we focus on the estimation of di�u-
sion tensors and di�usion/�ber ODFs from di�usion MRI.

2.1. Estimation of Di�usion Tensor Images

Several authors have already studied the prop-
erties of the non-linear space of di�usion tensors
(i.e., symmetric positive-de�nite matrices) in the con-
text of di�usion tensor processing (Basser and Pajevic,
2003; Fletcher and Joshi, 2004; Batchelor et al., 2005;
Pennec et al., 2006; Lenglet et al., 2006b; Fillard et al.,
2007; Schwartzman, 2006). Here we brie
y describe the
theoretical tools necessary for understanding the tensor
estimation procedure introduced in this subsection.

2.1.1. Computational Framework
We consider the family of 3D Gaussian distributions

with 0-mean as the 6-dimensional parameter space of vari-
ances and covariances. We identify it with S+ (3), the
set of 3� 3 symmetric positive-de�nite matrices. A Rie-
mannian metric can be introduced for S+ (3) in terms of
the Fisher information matrix (Burbea and Rao, 1982),
and it has the form gij = g(E i ; E j ) = hE i ; E j i � =
1
2 tr(� � 1E i � � 1E j ); 8 � 2 S+ (3) , where f E i g i; j = 1 ; :::; 6
denotes the basis of the tangent spaceT� S+ (3) = S� (3)
at � 2 S+ (3). The geodesic distanceDg induced by this
metric was investigated by several authors and the origi-
nal theorem can be found in Atkinson and Mitchell (1981).
We recall that the distance between two elements �1 and
� 2 of S+ (3) is the length of the minimizing geodesic curve
between these two points. Calvo and Oller derived an
explicit solution of the geodesic equations for general mul-
tivariate Gaussian distributions (Calvo and Oller, 1991).
The geodesic starting at � 1 in the direction V 2 T� 1 S+ (3),
the tangent space ofS+ (3) at � 1, is

�( t) = � 1=2
1 et � � 1= 2

1 V � � 1= 2
1 � 1=2

1 ; 8t 2 [0; 1]; (3)

and the geodesic distance between the two endpoints �1
and � 2 is

Dg(� 1; � 2) =

r
1
2

trace(log2(� � 1=2
1 � 2� � 1=2

1 )) :

Using these concepts, we can now describe a di�usion
tensor estimation algorithm that naturally enforces their
positive-de�niteness (Lenglet et al., 2006b).

2.1.2. Tensor Estimation
The estimation of a di�usion tensor image relies on

the Stejskal-Tanner equation (2). At least N =30 (and not
just the theoretical minimum of N =6) di�usion gradients
g are typically necessary to robustly estimate the apparent
di�usion coe�cient, fractional anisotropy and tensor ori-
entations (Jones, 2004). The classical technique for ten-
sor estimation relies on a least-squares procedure where
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NPD tensors Mean Variance Minimum Maximum
Least Squares 225 12.9 40.4 0.00199 227

Gradient Descent 0 0.658 5.78 0.00409 143

Table 1: Least-squares (LS) and gradient descent estimatio n: Number of non-positive de�nite (NPD) tensors (col. 1), an d the di�erence
between estimated and ground-truth tensor �elds (col. 2-5)

equation (2) is rewritten as a linear system, which can
be solved e�ciently. However, it has the disadvantage of
potentially producing tensors with negative eigenvalues,
which are physically impossible. We therefore seek to min-
imize the following objective function at each voxel of the
acquired volume:

E(S0; S(g1; b); :::; S(gN ; b)) =
NX

i =1

 
�

1
b

ln
�

S(gi ; b)
S0

�
+ gT

i Dg i

�
; (4)

where  : R 7! R is a real-valued function which reduces
the e�ect of outliers by replacing the classical least-squares
residual by a function such as the Cauchy, Fair, Huber or
Tukey M -estimators. We can minimize this energy by an
intrinsic gradient descent procedure that naturally evolves
on S+ (3). The gradient of E is (Lenglet et al., 2006b)

rE =
NX

i =1

 0
�

1
b

ln
�

S(gi ; b)
S0

�
+ gT

i Dg i

�
Dg i

�
Dg T

i

�
;

where we recall thatgi is known and given by the di�usion
gradient direction, S is a di�usion weighted image and D
is the unknown di�usion tensor. rE can be used as the ve-
locity V in the geodesics equation (3) to minimizeE while
remaining on the manifold of interest S+ (3). In Table
1, we compare the performance of a least-squares estima-
tion procedure with the gradient descent technique out-
lined above and further detailed in Lenglet et al. (2006b).
2500 tensors were generated to span a wide range of con�g-
urations and an arti�cial set of 12 di�usion-weighted im-
ages was created from these tensors by using the Stejskal-
Tanner equation. Gaussian noise was added and tensors
were re-estimated with the two methods. The gradient de-
scent technique clearly outperforms the least-squares ap-
proach as it is able to avoid non-positive de�nite tensors
and produces results much closer to the ground-truth data.
In practice, although this method is more time-consuming,
it has proved to be very useful to avoid degenerate tensors
in areas such as the genu or splenium of the corpus callo-
sum. As recently proposed, the Log-Euclidean framework
(Fillard et al., 2007) may also be used to estimate di�u-
sion tensors robustly and e�ciently. We now move to the
estimation of higher-order models of di�usion properties.

2.2. Analytical Reconstruction of the Di�usion ODF
In contrast with DTI, QBI (Tuch, 2004) is a model-

independent method to estimate the di�usion ODF, which
contains the full angular information of the di�usion PDF

and is de�ned using spherical coordinates as 	(�; � ) =R1
0 p(r; �; � )dr; where (�; � ) obey the physics convention

(� 2 [0; � ]; � 2 [0; 2� ]). A smoothed version of the dif-
fusion ODF can be directly reconstructed from a single-
shell HARDI acquisition using the Funk-Radon transform
(FRT) (Tuch, 2004). Intuitively, the FRT value at a given
spherical point is the great circle integral of the signal on
the sphere de�ned by the plane through the origin per-
pendicular to the point of evaluation. The original QBI
has a numerical solution (Tuch, 2004). More recent meth-
ods (Anderson, 2005; Hess et al., 2006; Descoteaux et al.,
2007a) have introduced an analytical spherical harmonic
reconstruction solution that is faster, more robust to noise
and does not require as many gradient-encoding directions.
To develop the analytical solution to QBI, the HARDI
signal �rst needs to be represented using spherical har-
monics (SH) and then, the FRT can be solved analyti-
cally using the SH basis. Letting Y m

` denote the SH of
order ` and degreem (m = � `; :::; ` ), a modi�ed SH ba-
sis that is real and symmetric is de�ned. For even order
`, a single index j in terms of ` and m is used such that
j (`; m) = ( `2 + ` + 2) =2 + m. The modi�ed basis is given
by

Yj =

8
<

:

p
2 Re(Y jm j

` ); if m < 0;
Y m

` ; if m = 0 ;p
2 (� 1)m +1 Im(Y m

` ); if m > 0;
(5)

where Re(Y m
` ) and Im(Y m

` ) represent the real and imag-
inary parts of Y m

` respectively. The basis is designed to
be symmetric, real and orthonormal. It is then possible to
obtain an analytical di�usion ODF estimate,	, with

	( �; � ) =
LX

j =1

2�P ` ( j ) (0)cj
| {z }

c0
j

Yj (�; � ); (6)

where L = ( ` + 1)( ` + 2) =2 is the number of elements in
the spherical harmonic basis,cj are the SH coe�cients
describing the input HARDI signal, P` ( j ) is the Legen-
dre polynomial of order `(j )2 and c0

j are the coe�cients
describing the ODF 	. Here, the cj coe�cients are es-
timated with the solution presented in Descoteaux et al.
(2006) with a Laplace-Beltrami regularization of the SH
coe�cients cj to obtain a more robust ODF estimation.
The detailed implementation of the Laplace-Beltrami reg-
ularization and a comparison with other state-of-the art
methods (Anderson, 2005; Hess et al., 2006) are presented
in Descoteaux et al. (2006, 2007a).

2 ` (j ) is the order associated with the j th element of the SH basis,
i.e., for j = 1 ; 2; 3; 4; 5; 6; 7; ::: ` (j ) = 0 ; 2; 2; 2; 2; 2; 4; :::
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dODF
N

fODF = dODF HARDI dODF fODF
R (true) 	 S 	 F

Figure 1: Left: Convolution between the di�usion ODF kernel , R, and true �ber ODF produces a smooth di�usion ODF estimate, 	 . Right:
The Funk-Radon transform of the HARDI signal, S, produces a smooth di�usion ODF, 	, which is transformed int o a sharper �ber ODF
estimate, F , by the deconvolution.

2.3. Analytical Reconstruction of the Fiber ODF

The relation between the measured di�usion ODF and
the underlying �ber distribution, the �ber ODF, is still
an important open question in the �eld (Tuch, 2002;
Perrin et al., 2005), the answer to which depends on the
physics of di�usion, cell membrane permeability, the free
di�usion coe�cients, axonal packing, the distribution of
axonal diameters, the degree of myelination in the under-
lying �ber bundles, and other parameters. The di�usion
ODF is thus a blurred version of the \true" �ber ODF. Be-
cause of this blurring e�ect, the extracted maxima of the
di�usion ODF are often used for �ber tractography. An
alternative is to use spherical deconvolution (SD) methods
that provide an estimate of the �ber ODF (Tournier et al.,
2004; Jian and Vemuri, 2007), also called the �ber orienta-
tion density (FOD). These techniques have better angular
resolution than QBI and produce sharper �ber ODF pro-
�les than the q-ball di�usion ODF. Smaller �ber compart-
ments with smaller volume fractions may be visible in the
�ber ODF but not in the di�usion ODF. SD and �ber ODF
estimation are currently topics of active research. Here, we
use a simple linear transformation of the analytical QBI
solution. A schematic view of the spherical deconvolution
method is shown in Fig. 1.

The �ber ODF is reconstructed in three steps:

1. The regularized di�usion ODF coe�cients c0
j are re-

constructed using equation (6) of the previous section,
c0

j = 2 �P ` ( j ) (0)cj =S0.
2. The single �ber di�usion ODF, R, used as a decon-

volution kernel, is estimated from the real data. We
assume an axially symmetric di�usion tensor model
with eigenvalues (e2; e2; e1) and e1 >> e 2 for the un-
derlying single �ber di�usion model (Tournier et al.,
2004). The values ofe1 and e2 are estimated from 300
voxels with highest FA value in our real dataset, as
these voxels can each be assumed to contain a single
�ber population. The single �ber di�usion ODF ker-
nel has an analytical expression (Descoteaux et al.,

2007b) and is given by R(t) = (1 � �t 2 ) � 1= 2

8�b
p

e1 e2
; where

� = (1 � e2=e1), b is the b-value of the real dataset
and t 2 [� 1; 1] is the variable that represents the dot
product between the direction of the �ber and the
point of evaluation ( �; � ) on the sphere.

3. The SH coe�cients of the �ber ODF, f j , are then
obtained by a simple linear transformation, f j =
c0

j =r` ( j ) , with r ` ( j ) = 2 �
R1

� 1 R(t)P` ( j ) (t)dt, which can
be solved analytically by taking the power expansion
of P` ( j ) (t) and integrating r ` ( j ) term by term. As for
the analytical di�usion ODF solution, the spherical
deconvolution is obtained with the Funk-Hecke theo-
rem (Descoteaux et al., 2007a). Therefore, the �ber
ODF, expressed in terms of the HARDI signal, is

f j =
8�b

p
e1e2P` ( j ) (0)

S0A ` (� )
cj ;

with A ` (� ) =
Z 1

� 1
(1 � �t 2) � 1=2P` (t)dt (7)

.
The �nal �ber ODF can be reconstructed for any ( �; � ) as
F (�; � ) =

P R
j =1 f j Yj (�; � ): F provides a valid choice for

the �ber ODF (Descoteaux et al., 2007b), in close agree-
ment with the SD method Tournier et al. (2004).

Di�usion tensors and ODFs are at the heart of the
white matter connectivity and complexity analysis meth-
ods of the next sections.

3. White Matter Connectivity Analysis

3.1. Identi�cation of Sub-voxel Fiber Bundle Con�gura-
tions

Despite the many advantages of HARDI reconstruc-
tions over the di�usion tensor model, they can still be am-
biguous and di�cult to interpret in the presence of com-
plex sub-voxel �ber tract con�gurations (Le Bihan et al.,
2006; Parker and Alexander, 2005) and thus confound
�ber tracking algorithms. Di�erent �ber geometries can
yield similar di�usion /�ber ODFs, but require di�erent
decisions in tractography. To illustrate this, consider the
two types of sub-voxel �ber structures depicted in Fig.
2. Both the single curving �ber tract (left) and the fan-
ning �ber tract (right) are likely to result in an almost
indistinguishable ODF with a single broad peak oriented
in the vertical direction (middle panel in left and right
sub�gures). This is due to the presence of a relatively
wide array of �ber tangent directions within one voxel,
which results in a broad �ber ODF pro�le. Although they
yield a similar ODF, because of a similiar sub-voxel �ber
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Figure 2: Sub-voxel �ber con�gurations that can cause ambig uous
�ber ODF shapes. The red curves denote �bers in a speci�c voxe l,
and the yellow glyph shows the reconstructed ODF. The arrows show
the directions of a typical �ber path traversing this voxel; con�gura-
tions di�er despite having the same ODF.

tangent distribution, each of these structures requires a
di�erent decision from a �ber tracking algorithm. For a
curving �ber bundle, only one path should be recovered,
with a local tangent given by the medial direction of the
broad maximum (left). But for a fanning con�guration,
multiple paths should be followed when propagating in
one direction (polarity vector represented by a green ar-
row in the right sub�gure), and only one direction should
be followed when propagating in the other (blue arrow).
This illustrates the importance of recovering the polarity
of the fanning in addition to its extent. Hence, in order
to take the appropriate action, it is crucial for tracking
methods to be able to di�erentiate between these types of
sub-voxel con�gurations. The distinction between a fan-
ning �ber tract and a single �ber tract with high curvature
is known to be particularly challenging (Le Bihan et al.,
2006; Parker and Alexander, 2005). It can be addressed
by relating �ber ODF data to the underlying white mat-
ter �ber tracts, modeled as 3D curves (Savadjiev et al.,
2008). This approach is based on the 3D curve inference
method (Savadjiev et al., 2006) described below, which in-
fers the curves that best describe the underlying white
matter �bers in each voxel. By integrating information
over a local neighborhood, this method can resolve ambi-
guities that cannot be clari�ed by only considering indi-
vidual ODFs.

3.1.1. 3D Curve Inference
3D curve inference is a di�erential geometric method

for inferring of helical arcs as osculating approximations
to arbitrary 3D curves, based on a support measure de-
�ned over a local neighborhood. In the context of di�u-
sion MRI orientation data, this enables the local curvature
and torsion of white matter �bers to be estimated. Dis-
tinct sub-voxel �ber bundle con�gurations that share the
same tangents (orientations) at a particular voxel can be
distinguished from one another. As input, the algorithm
requires a discretized regular (typically rectangular) 3D
lattice, with a �ber ODF de�ned at each lattice location
(voxel). Each of these ODFs is then sampled along several
orientations. A notion of co-helicity can be formally de-
�ned (Savadjiev et al., 2006) and relates individual orien-
tations at distinct voxels through a geometrical constraint.
In particular, the conditions under which three orienta-
tions de�ned at three distinct locations in space can be

Figure 3: Co-helical triplets obtained by the 3D curve infer ence al-
gorithm. In the fanning case (left), multiple ODFs on the fan ning
side can have their maxima (red, green, blue) cohelical with di�erent
orientations in the central (ambiguous) ODF and with the sam e max-
imum (black) of an ODF on the merging side. The inferred curve s
are shown with dashed lines. In the single curving tract case (right),
only one set of co-helical triplets of ODF maxima (blue) exis ts. Only
one curve is inferred.

tangent to a helix are determined. Based on these con-
ditions, a measure of the support that a given orienta-
tion (at a given voxel) receives from co-helical con�gu-
rations of neighboring orientations (at neighboring vox-
els) is calculated. This measure is weighted by the ODF
value along these orientations at the voxels of interest.
We then discretize the parameter space describing helical
curves. A best-�t helix is determined for each orienta-
tion, based on the support obtained from the neighbor-
hood. 3D curve inference can be used to perform ODF
regularization (Savadjiev et al., 2006). ODF values in ori-
entations that are not aligned with the inferred curves are
discarded, whereas those that are aligned with the inferred
curves are supported. The inferred best-�t helices can be
used to disambiguate curving vs. fanning subvoxel �ber
con�gurations (Savadjiev et al., 2008), as described next.

3.1.2. Labeling of Ambiguous Sub-voxel Fiber Tract Con-
�gurations

To motivate the approach, consider Fig. 3, which
shows a schematic of the inferred curves in the case of a
fanning �ber tract and of a single curving �ber tract. For
simplicity, only a 2D case is illustrated, but the technique
is applicable to any 3D ODF dataset. In the general 3D
case, the inferred curves will be helical, i.e., they will have
both curvature and torsion. Local helix approximations to
�bers are constructed by searching for co-helical triplets of
�ber ODF maximum orientations in a local neighborhood.
A co-helical triplet is interpolated to a helix which is used
as a local approximation to the (arbitrary) 3D curve that
represents an underlying white matter �ber tract. Thus, a
given �ber ODF orientation presents evidence for an un-
derlying curve (helix) if it is the central element of a co-
helical triplet in a spherical neighborhood centered on that
voxel and if its parameterization inferred through 3D curve
inference agrees with the parameters (curvature, torsion)
of the cohelical triplet. As an example, the three sam-
pling orientations corresponding to the three blue maxima
in Fig. 3 (right) form a co-helical triplet of orientations.
Similarly, in Fig. 3 (left), the groups of red, green and blue
maxima all form co-helical triplets with the black maxi-
mum, which is common to all three groups. One or more
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Label ODF Maxima Curves Con�guration
Single �ber tract 1 One helix.

Fanning 1 Two or more distinct and diverging helices.
Crossing � 2 Number of helices = number of ODF

maxima with su�cient angular separation.

Table 2: Labels obtained from local helix curves con�gurati on and �ber ODF maxima.

such helices can pass through a given voxel, as one helix
is assigned to each ODF orientation in that voxel. For ex-
ample, three such helices pass through the central ODF in
Fig. 3 (left), associated with the red, green and blue ori-
entations, respectively. The number and the con�guration
of these helices are used to label the voxel as belonging to
a fanning, crossing, or single �ber tract con�guration, as
described in Table 2. This labeling uses two types of in-
formation: 1) ODF shape information at each voxel. (The
number of local maxima can be used to distinguish cross-
ings from the other two cases. The crossing case is included
for completeness.) 2) A geometric model inferred from a
neighborhood of voxels. The helices inferred by the 3D
curve inference algorithm are used to distinguish fanning
con�gurations from single, possibly curving, �ber tracts.
We emphasize that the inferred helical curves are local ap-
proximations to more global 3D curves, obtained indepen-
dently at each voxel. Thus the local helical approximations
will typically di�er from one location (voxel) to the next.
In summary, the approach uses evidence from inferred he-
lix curves and their local con�gurations to disambiguate
the three cases outlined in Table 2. Since helices are para-
metric curves, and since they are represented by co-helical
triplets of tangents, it is straightforward to check the num-
ber and local con�guration of helices that pass through any
given voxel. These ideas are developed into an algorithm,
described in pseudocode in Savadjiev et al. (2008), where
implementation details are also discussed. As we show in
the next section, this labeling information turns out to be
very important when performing �ber tractography.

3.2. Di�usion MRI Tractography

3.2.1. Overview
The previous sections have discussed how to robustly

extract information about �ber orientations, at the voxel
scale, using di�usion MRI. One application of such tech-
niques is to infer global connectivity in the central ner-
vous system. Fiber tractography is used to integrate the
voxel-scale �ber orientations in order to create maps of
connectivity between distant areas. The delineation of
these pathways is useful in determining whether speci�c
areas of the brain are connected, the course of these con-
nections, and how these connections change in diseases.
The extracted pathways can be used as regions of inter-
est in which to investigate other scalar parameters, such
as fractional anisotropy or measures extracted from other
types of MRI contrast. The pathways may also be used

for parcellation of given brain regions based on di�er-
ences in connectivity to and from them (Behrens et al.,
2003; Frey et al., 2006). Numerous �ber tractography al-
gorithms exist, but di�erent integration and interpola-
tion schemes, and varying step sizes (Lori et al., 2000),
and seeding protocols (Campbell et al., 2005), can greatly
in
uence the streamline propagation results. Integra-
tion approaches include Fiber Assignment by Continu-
ous Tracking (FACT) (Mori et al., 1999), Euler-Lagrange
(Conturo et al., 1999), and Runge-Kutta (Basser et al.,
2000). Each technique has bene�ts, such as robustness
to high curvature (Lazar and Alexander, 2003), as well as
drawbacks. Front evolution approaches, including level-set
techniques, have also been investigated for tractography
(Parker et al., 2002; Campbell et al., 2005; Tournier et al.,
2003; Jackowski et al., 2005; Prados et al., 2006). There
are clear theoretical bene�ts of incorporating information
about complex sub-voxel �ber geometry in tractography.
We have investigated the improvements in vivo and in
phantoms. Fig. 4 shows an example tractography com-
parison in the human brain. Fig. 4a is the result of using
the di�usion tensor model and propagating along the prin-
cipal eigenvector. Fig. 4b is the result of using theq-ball
model-free reconstruction method (Tuch, 2004), propagat-
ing along the �ber ODF maxima. Using DTI, generally
only the most medial projections of the corpus callosum
are seen. Q-Ball Imaging is more capable of picking up the
projections that cross through the cortico-spinal tract and
superior longitudinal fasciculus. The tractography shown
in Fig. 4c is performed by exploiting the labeling of fan-
ning and curving �bers described in Section 3.1. Using the
labeling information generally results in subtle improve-
ments in the sensitivity of the tractography, especially for
�ber bundles fanning toward the cortex. This can be a
great bene�t, e.g., in assessing connectivity between corti-
cal areas, such as co-activated areas in functional studies.

3.2.2. Details and Comparison of Tractography Methods
For the tracking results shown in Fig. 4b/c, we pro-

ceeded as follows. In Fig. 4b, the deterministic method
described in Savadjiev et al. (2008) was used. No inter-
polation was performed. Streamlines were propagated
using FACT integration along the ODF maxima. The
tracking was stopped if the fractional anisotropy (FA) was
less than 0.1, the mean di�usivity was greater than 10� 6

mm2/ms, or the angular di�erence in the orientation of
the tract from one voxel to the next was greater than 80�
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Figure 4: E�ect of incorporating information on complex sub -voxel �ber geometry in tractography. Fiber tracking resul t in human brain using
(a) DTI, (b) QBI, and (c) the �ber geometry information descri bed in Section 3.1. Tracking results are displayed as isosur faces encompassing
all voxels connected to the seed ROI (green)

a b c

Figure 5: Deterministic and probabilistic tracking of the p rojections of the corpus callosum to Broca's area. (a) Determ inistic Split-Streamline
tractography, (b) Probabilistic tractogram, (c) Probabil istic �bers colored by their end point projections. In sub�g ures (b) & (c), colors indicate
probability of connection.

(these parameters also apply to Fig. 4a). An alternate
solution for deterministic tracking using �ber ODFs
was proposed to take into account multiple maxima at
each step (Descoteaux et al., 2007b). This is illustrated
in Fig. 5a. Similar initialization and parameters to
those of Savadjiev et al. (2008) were used and trilinear
interpolation was performed to obtain di�usion ODF,
�ber ODF and DT at subvoxel precision.

In Fig. 4c, except where fanning was indicated, the
direction of propagation was also given by the ODF
maximum. However, when fanning was indicated (i.e., the
dot product of the incoming direction with the fanning
polarity vector was positive), the tracking algorithm
followed all �ber directions from the �ber ODF, thus
exploiting the rich information provided by the labeling of
ambiguous sub-voxel �ber tact con�gurations of Section
3.1. Tracking was initiated in all voxels in a small region
of interest in the corpus callosum. At voxels labeled
as single curves, the propagation direction was given
by the �ber ODF maximum closest to the incoming
direction. At voxels labeled fanning �bers, the direc-
tion of propagation depended on whether the incoming
direction was in the direction of the fanning, or in the
direction of the merge. For the former, all directions in
the extent of the fanning area, given by the �ber ODF
distribution, were followed; for the latter, the �ber ODF

maximum only was followed. For voxels with multiple
�ber ODF maxima, the maximum closest to the incoming
direction was followed. The fanning was accomplished
by running the entire tracking process iteratively and
randomly selecting a direction at each iteration. 10000
iterations were used. For all starting ROI voxels, the
tracking was initiated on a 3x3x3 grid of start points in
order to facilitate branching. Streamlines were propa-
gated using FACT integration. Tracts that erroneously
turned down the cortical-spinal tract were excluded. A
connectivity pro�le of all voxels reached by the track-
ing was saved and an example result is presented in Fig.4c.

Finally, the rich information of �ber ODFs can be
exploited in a probabilistic way (Descoteaux et al.,
2007b). A random walk method (Koch et al., 2002)
was extended as follows: A large number of particles
is typically started from a seed point. The particles
randomly propagate according to our local �ber ODF
estimate, F , and the number of times a voxel is reached
by the path of a particle is counted. This yields higher
transitional probabilities along the main �ber direc-
tions. For each elementary transition of a particle, the
probability of a movement from the seed point x to
the target point y in direction uv xy is computed as the
product of the local �ber ODFs in direction uv xy , i.e.
P(x ! y) = F (uv xy )x � F (uv xy )y ; where P(x ! y) is
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Figure 6: Error and uncertainty in tractography. (a) Brute fo rce seeding strategy, using identical parameters to Fig. 4b . (b) False positive
tracking results in the absence of exclusion masks. (c) Maxi mum intensity projection of probabilistic connectivity va lues. All experiments
used the same tract-delineating ROI in the corpus callosum.

the probability for a transition from point x to point y
and F (uv xy )x is the �ber ODF at point x in direction xy
(by symmetry, direction xy and yx are the same). This
method is illustrated in Fig. 5b/c. A tractogram (i.e.,
the 3D distribution of connected voxels to the seed voxel)
of a voxel of the corpus callosum and sample �ber tracts
included in the probability map are presented.

3.2.3. Sensitivity and Error Analysis
Fiber tractography is rarely fully automatic. It is

prone to false positive and false negative results, and the
precise tracking protocol has a large e�ect on the end
results. As described above, we can initiate tracking on
a grid within each start voxel. This approach facilitates
branching and improves the sensitivity of the technique.
We have found that the density of seeding in each start
voxel impacts the tracking results: the point at which
the result converges depends on the system under inves-
tigation. For any given pathway, the regions of interest
selected to delineate the pathway will impact the result.
The user can also choose between initiating tracking
only in these regions of interest, or initiating tracking
everywhere and retaining those tracts that pass through
the ROIs (the \brute force" approach (Conturo et al.,
1999)). Fig. 6a shows the result using brute force seeding
for the same tract-delineating ROI used in Fig. 4. Brute
force tractography generally reduces false negatives and
seed point dependence of the results, and enables fanning
to some extent, as can be seen by comparison to Fig.
4c. It also guarantees reversible tractography results:
the connectivity between point x and point y should be
the same as the connectivity between pointy and point
x. Tractography is usually supervised, in that exclusion
masks are used to remove false positives. At the resolution
of typical di�usion imaging protocols, it is probable that
inferred �ber trajectories will jump from one pathway
to another, so some prior knowledge of the anatomy is
necessary. One common artifact, when reconstructing
the corpus callosum for instance, is to jump onto the
cortico-spinal tract (CST), as shown in Fig. 6b. Masks
were used to remove the CST from the other tracking
results in Fig. 4.

As with any measurement, uncertainty in the trac-
tography result should be quanti�ed. Uncertainty in
tractography arises from uncertainty in the directions of
propagation in all of the voxels that constitute a tract.
The uncertainty should re
ect our con�dence that there
is a �ber in a given direction, and the con�dence in
the direction itself. Uncertainty in the direction arises
from imaging noise and from limitations of the chosen
reconstruction technique. In the case of DTI, it is
relatively easy to acquire multiple datasets in order to
estimate the standard deviation � � of the distribution
for the angle of propagation. For high angular reso-
lution, in which the minimal data acquisition is much
larger, statistical techniques such as bootstrap methods
(Haroon and Parker, 2007; Berman et al., 2008) and
Markov Chain Monte Carlo in a Bayesian framework
(Fonteijn et al., 2007; Behrens et al., 2007) are being
explored. Here, we illustrate this concept of uncertainty
in probabilistic q-ball tractography in Fig. 6c, using the
�nite angular resolution of the acquisition to determine
� � (Frey et al., 2006). The con�dence in the direction of
propagation is given by a truncated Gaussian pro�le with
maximum at the maximum of the di�usion ODF and
standard deviation � � . The connectivity map is shown as
a maximum intensity projection. The connectivity value
of a voxel to a given ROI is given by the lowest con�dence
value of all tract segments along the tract between
the voxel the ROI (Parker et al., 2002; Campbell et al.,
2005). An advantage of this \weakest link" approach
over counting the number of times a voxel is reached
by a random tracking process (Behrens et al., 2007) is
that if a voxel is reached many times but by di�erent
routes, it still has low probability of connection to the
ROI. It is also more amenable to the brute force tracking
approach. Here, tracking was performed using the brute
force approach, with 1000 starts per voxel in order to
randomly sample the cones of uncertainty around each
maximum.

In the human brain, there is no gold standard trac-
tography result with which to evaluate tractography al-
gorithms. Anatomy varies from brain to brain, and our
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Figure 7: Fiber tracking result in phantom using (a) di�usio n tensor and brute force seeding, (b) q-ball and brute force seeding, (c) q-ball
with seeding only in the tract-delineating ROI, located in t he bottom curved part of the tract. A transparent surface ind icating the gold
standard cord segmentation is shown for reference.

understanding of human neuroanatomy is still incom-
plete. There is therefore a need for phantoms for eval-
uation of tractography. There has been considerable work
on synthetic phantoms, e.g., (Lazar and Alexander, 2003;
Tournier et al., 2002; Perrin et al., 2005; Close et al.,
2008). Physical phantoms are useful for evaluating MRI
sequences and evaluating post-processing techniques in the
presence of imaging artifacts, such as eddy-current induced
distortions, and noise. These include biological phantoms
(Boujraf et al., 2001) and phantoms made from textiles
(Watanabe et al., 2006). We have created a physical phan-
tom made from excised rat spinal cords (Campbell et al.,
2005) (see Fig. 7). While simple, this phantom provides
a gold standard tractography result for quantitative com-
parisons between algorithms, seeding strategies, and other
tracking parameters. A physical phantom should have
structures that restrict di�usion in a timeframe compati-
ble with an MRI experiment, and di�usion properties and
complex �ber geometries comparable to thosein vivo. It
is also desirable to match the MR relaxation properties of
human tissue. Fig. 7 illustrates the use of the phantom to
compare tracking approaches. Both di�usion tensor and
q-ball reconstruction were performed on the same dataset.
Fig. 7a and 7b show tracking results using the di�usion
tensor model and q-ball imaging, respectively, using the
same tract-delineating ROI on the curved tract and brute
force seeding. The tensor model fails to capture the cross-
ing �bers necessary to reconstruct the whole tract. Fig. 7c
illustrates ODF tracking without brute force seeding: the
di�erences between using brute force seeding and not are
often evident near curves. This example also illustrates
that connections to regions more distant from the ROI are
sparser.

4. White Matter Segmentation and Complexity
Analysis

Clustering methods for di�usion MRI have been re-
cently introduced and provide a complementary point of
view to the analysis of the white matter architecture. They
typically rely on some metric between di�usion tensors or

ODFs and allow us to identify various �ber bundles or
regions of the white matter with di�erent di�usion pro-
�les. While many techniques have been proposed to clas-
sify the gray matter, white matter and cerebrospinal 
uid
from T1-weighted MR images, the literature addressing
the clustering of white matter and sub-cortical structures
from di�usion MRI is fairly recent. In this context, two
main features identify each element of a di�usion image:
the position on the image and the di�usion characteristics.
To perform e�ective clustering, the contribution of these
two features must be carefully exploited. Quantifying the
similarity between the di�usion features (tensors, ODFs)
is still a subject of current investigations. In the following,
we denote the position in the di�usion image by x i and D i

stands for the di�usion characteristic (either the di�usion
tensor or some representation of the ODF).

4.1. Methods Based on DTI

The �rst approach that used DTI to elucidate struc-
ture in the brain by means of clustering was designed to
identify the di�erent nuclei of the thalamus (Wiegell et al.,
2003). It uses ak-means algorithm. The spatial metric is
the Mahalanobis distance with respect to each cluster and
the feature metric is the Frobenius norm of the di�erence
between tensors. The choice of this last metric is crucial
and discussed in the following, where we focus on �ber
bundle segmentation.

One of the very �rst approaches to �ber bundle segmen-
tation (Zhukov et al., 2003) was able to cluster white mat-
ter structures by only using the fractional anisotropy as the
di�usion characteristic, in a surface evolution framework
(which is well-suited for controlling the shape and smooth-
ness of the resulting clusters). A 3D surfaceS is repre-
sented by the zero level set of a 4-dimensional function� ,
S = f x 2 R3 : � (x; t ) = 0 g, and � is evolved according to
the di�erential equation @�(x; t )=@t= � F (x)k r � (x; t )k;
where F is a scalar-valued function which drives the evo-
lution of � , and implicitely deforms the surfaceS along its
normals. F is usually made of two termsF = Fc + �F s. Fc

quanti�es characteristics of the regions to segment andFs

drives the smoothness of the surface;� is a user-selected
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weight. Fs and Fc can be respectively chosen as the mean
curvature of the surfaceS and an edge detector function
R 7! [0; 1] applied to a smoothed FA map (Zhukov et al.,
2003). To generalize this approach and take advantage of
the full tensor information, the function Fc was adapted
to work on a generalized structure tensor for di�usion ten-
sor �elds (Feddern et al., 2003). This approach allowed
some improvements over the previous work and was among
the �rst to focus on the de�nition of an adequate met-
ric between di�usion tensors. Later, a statistical level-set
segmentation method was introduced (Wang and Vemuri,
2004). In this method, Fc is based on a regional descrip-
tion of the inner and outer compartments:

Fc = �D f (D ; D in ) + Df (D ; D out ) =

� k D � D in k2
F + k D � D out k2

F ; (8)

where D in and D out are the Fr�echet means of tensors in-
side and outside the surfaceS. The Fr�echet mean D of
a set of N tensors f D i gi =1 ;:::;N is analytically or itera-
tively computed as the minimizer of the tensors' variance,
depending on the choice of metric. Such a regional ap-
proach allows the tensors in the inner and outer regions
to vary in a piecewise constant manner, contrary to ap-
proaches which only search for sharp variations of the FA,
or other anisotropy maps (Zhukov et al., 2003). Thus, the
algorithm presented in Wang and Vemuri (2004) is capa-
ble of detecting �ber bundles where the tensor's shape
changes smoothly. However, because of the use of the Eu-
clidean distanceDf between tensors (Frobenius norm), the
Fr�echet mean D in=out is not guaranteed to be positive-
de�nite, thus generating artifacts and incorrect segmen-
tations in regions where tensors' variation is large. To
overcome this problem, several authors have studied the
in
uence of the metric. Considering the di�usion tensor
as the covariance matrix of a zero-mean Gaussian distri-
bution, the symmetrized Kullback-Leibler divergence or
J-Divergence was introduced (Wang and Vemuri, 2005):

D j (D 1; D 2) =
1
2

q
trace

�
D � 1

1 D 2 + D 1 D � 1
2

�
� 6;

and used to extend previous work (Wang and Vemuri,
2004). It is a natural metric between probability distri-
butions, which turns out to have a closed form expres-
sion in the Gaussian case. It also has a closed form ex-
pression for the mean tensor. Next, two di�erent dis-
tances between tensors were introduced in a similar level
set formulation (Jonasson et al., 2005). This was later
extended to prevent overlapping when propagating mul-
tiple surfaces for the segmentation, for instance, of the
thalamic nuclei (Jonasson et al., 2007b). The �rst dis-
tance, called Integrated Similarity, compares the di�usion
properties from two di�erent voxels. It is expressed as
D is (D 1; D 2) = 1

4�

R
S2 min

�
d1 ( r )
d2 ( r ) ; d2 ( r )

d1 ( r )

�
dr; where d1(r ) is

the di�usion coe�cient in direction r for the tensor D 1.
This metric compares di�usion coe�cients over all pos-
sible directions and is very sensitive to small di�erences

between the shapes of the tensors. It has, however, a
high computational cost. Another metric is used to cal-
culate the empirical mean of a set of tensors. It mea-
sures the overlap between two tensors and is de�ned as
Do(D 1; D 2) =

p
trace(D 1 D 2). It has also been pro-

posed to use a Riemannian metric derived from the Fisher
information matrix in an extended statistical framework
(Lenglet et al., 2006a). This metric yields a geodesic dis-
tance on the manifold of zero-mean Gaussian distribu-
tions S+ (3), as presented in Section 2.1.1. This distance

can also be expressed asDg(D 1; D 2) =
q

1
2

P 3
i =1 log2(� i )

where the scalars� i are the eigenvalues of the matrixq
D � 1

1 D 2

q
D � 1

1 . The authors also demonstrated how to
approximate a Gaussian distribution on S+ (3) and to ex-
ploit this information in the segmentation procedure. The
practical di�erences of using the three di�erent distances,
Df=j=g , in the extended statistical surface evolution frame-
work of Lenglet et al. (2006a) are illustrated in Fig. 8.
Recently, a distance with similar properties to those ofDg

was introduced (Arsigny et al., 2006). This Log-Euclidean
distance

D le (D 1; D 2) =
p

trace((log(D 1) � log(D 2))2)

has the advantage to be simple to implement and fast to
compute. However, it has not been extensively studied for
segmentation tasks yet, aside from its use in two recent pa-
pers (Weldeselassie and Hamarneh, 2007; Malcolm et al.,
2007). In both works, the image is segmented into
two parts by minimizing an energy functional similar to
the one of Wang and Vemuri (2005). A non-parametric
approach relying on the Log-Euclidean distance and a
Markov random �eld framework was also recently de-
scribed (Awate et al., 2007). Finally, a graph-theoretical
approach, known as N-Cuts (Shi and Malik, 2000), was
used (Ziyan et al., 2006). This graph partitioning tech-
nique is based on the link between the second smallest
eigenvector of the Laplacian matrix of a graph and opti-
mal partitions. The nodes of the graph are the voxelx i

of the image and the weights of the edges between those
nodes are obtained from similarities between neighboring
tensors. The similarity between tensors can be any of the
previously described distances or restricted to the direc-
tional information of the principal eigenvectors. The out-
line of the procedure proposed in Ziyan et al. (2006) is as
follows: First, a matrix Ws is built to encode local simi-
larity between tensors. It is only non-zero for neighboring
voxels:

f Wsgij =

8
><

>:

exp
�

�
D2(D i ; D j )

� 2

�
; if kx i � x j k � 1

0; otherwise:
(9)

� is a chosen scale parameter. Next, local similarities
are propagated to a full a�nity matrix W by converting
Ws into a one-step transition probability matrix whose
rows and columns sum to one. Markovian relaxation
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Figure 8: DTI statistical segmentation using di�erent dist ances: D f ,D j ,Dg . Di�erences are observed in the splenium of the corpus callo sum.

(Tishby and Slonim, 2000) is used to generate then-step
transition probability matrix. Finally, this matrix is re-
cursively partitioned in two clusters by using eigenvalue
decomposition and thresholding the eigenvector with the
second smallest eigenvalue. This produces a hierarchical
clustering. The number of recursions is ultimately chosen
to obtain the desired number of clusters. The main limi-
tation of this algorithm is the need for a uniform sampling
of the (x i ; D i ) at the end of the Markovian relaxation.
An extension of this approach to ODFs was recently pro-
posed (Wassermann et al., 2008), as we will describe in
the next section. As we are now going to discuss, level set,
Markov random �elds and graph-theoretic segmentation
frameworks have also recently been extended to HARDI
datasets.

4.2. Methods based on HARDI

As described in Section 2, the di�usion tensor model
cannot describe complex white matter �ber con�gurations,
and HARDI techniques like QBI were introduced to over-
come this issue. It is thus natural to exploit this informa-
tion to improve white matter segmentation results. The
5D space de�ned by the location of the ODFs on the acqui-
sition grid and their orientational information can be used
(Hagmann et al., 2006; Jonasson et al., 2007a). These seg-
mentation procedures are respectively implemented with a
hidden Markov random �eld or level set framework. Mix-
tures of von Mises-Fisher distributions were proposed to
model the ODFs (McGraw et al., 2006) and segmentation
was also performed with a hidden Markov random �eld
scheme in this work. It is possible to use a spherical har-
monics (SH) decomposition of the ODF at each voxelx i .
The di�usion characteristic D i is then replaced by a vector
of SH coe�cients. Although the most appropriate metric
between ODFs is an open area of research, theL 2 norm
can be used and e�ciently computed. Two other cluster-
ing techniques have been proposed that take advantage of
the SH representation. First, in Descoteaux and Deriche
(2008), we generalized the level set algorithm presented
in Wang and Vemuri (2004); Lenglet et al. (2006a) to the
HARDI case. Equation (8) is modi�ed such that the dis-
tance is the L 2 norm of the di�erence of SH coe�cients.
As can be seen in the two images on the left of Fig. 9, the

projections of the corticospinal tract to the cortex can only
be successfully segmented by using HARDI data. Second,
in Wassermann et al. (2008), we extended the work pre-
sented in Ziyan et al. (2006) in three ways: 1) The matrix
presented in equation (9) was rewritten to use theL 2 norm
between the SH coe�cients of the ODFs. 2) The matrix
obtained after Markovian relaxation is normalized in or-
der to relax the hypothesis on the sampling of the (x i ; D i ).
3) This matrix is �nally used as an input for the di�u-
sion maps method (Lafon and Lee, 2006). This method
produces a mapping, where each element (x i ; D i ) is rep-
resented as a point in Euclidean space, and an estimation
of the number of clusters existing in the set. Ak-means
algorithm is used to automatically �nd the clusters. The
two images on the right of Fig. 9 show that segmentation
results are coherent with white matter anatomical knowl-
edge.
In the following section, we show how HARDI clustering
techniques can be extended to quantify the geometrical
complexity of segmented �ber bundles. Beyond the assign-
ment of labels, it is possible to provide a scalar measure
that correlates with the expected variations of the con�g-
urations of the white matter �ber tracts.

4.3. Quanti�cation of the Non-uniform Complexity of the
White Matter

In this section, we describe how the white matter
microstructure complexity (or dimensionality) may be
studied. Here, the complexity is understood as meaning
the minimum number of parameters needed to represent
the di�usion MRI data (tensors, ODFs) in an underlying
sub-manifold of Rm (m � 6 depends on the order of the
SH approximation of ODFs). Regions with or without
�ber crossings clearly belong to manifolds with di�erent
complexity, and we usestrati�cations (Haro et al., 2008b)
(i.e., the union of manifolds with di�erent dimensions
and densities) to quantify the local complexity of DTI
and HARDI datasets and relate it to known features of
neuroanatomy (Haro et al., 2008a).

A geometric and probabilistic method was recently
proposed to estimate the local dimension and density of
point clouds in Rm (Levina and Bickel, 2005). It was

11



Figure 9: Left: Comparison between DTI and HARDI level set se gmentation methods. Right: Di�usion Maps clustering of HAR DI data

then extended by modeling high-dimensional sample
points as a process of translated Poisson mixture, with
regularizing restrictions (Haro et al., 2008b). Noise
is naturally handled and it is possible to identify the
underlying manifolds with di�erent dimensions and
densities. The outline of the method is as follows: If
we sample an m-dimensional manifold with T points,
the proportion of points falling into a ball around x t is
k
T � � (x t )V (m)Rk (x t )m (Levina and Bickel, 2005). The
point cloud of interest, embedded in high dimensionD,
is X = f x t 2 RD ; t = 1 ; : : : ; Tg, k is the number of
points inside the ball, � (x t ) is the local sampling density
at point x t , V (m) is the volume of the unit sphere in
Rm , and Rk (x t ) is the Euclidean distance from x t to its
k-th nearest neighbor (kNN). The inhomogeneous process
N (R; x t ), which counts the number of points falling into
a D-dimensional sphereB (R; x t ) of radius R centered
at x t , can be approximated by a Poisson process with
rate � (R; x t ) = � (x t )V (m)mRm � 1. The local intrinsic
dimension and density estimators at each pointx t are
obtained from the Maximum Likelihood (ML) estimator
based on a Poisson distribution with this rate.

Noise usually contaminates the point cloud, so the
observed point process (i.e., the ODFs) is not a sampling
of a low-dimensional manifold but rather a perturbation
of this sample process. This is modeled with a trans-
lated Poisson process (Snyder and Miller, 1991), which
translates an underlying (unobservable) point process
into an output (observable) point process according to
a conditional probability density f called the transition
density. If each point is translated independently and
no deletion or insertion occur, any translated Poisson
process with an integrable intensity function � on the
input space X is also a Poisson process with intensity
� (z) =

R
X f (zjx)� (x)dx; 8z 2 Z , on the output space.

The intensity of our observable process� (r; x t ) is pa-
rameterized by the Euclidean distance between points
so the density f (sjr ) transforms a distance r in the
input space to a distances in the observable space. The
intensity of the Poisson process in the output space is
� (s; xt ) =

RR 0

0 f (sjr )� (x t )V (m)mr m � 1dr; where R0 > R
since points originally at a distance greater thanR from

x t can be placed within a distance less thanR after the
translation process.

Maximizing the likelihood of the new translated Poisson
process, we obtain a nonlinear recursive expression for
the local dimensionm(x t ) at point x t , which is di�cult to
solve. We approximate it by an easier to compute closed
expression, with explicit bounds on the approximation
(see Haro et al. (2008b) for details),

m(x t ) �

"
1

k � 1

k � 1X

i =1

RR 0

0 f (Ri jr ) log R k
r dr

RR 0

0 f (Ri jr )dr

#� 1

: (10)

The associated density estimator is � (x t ) =
(k � 1)=(V (m(x t ))Rm (x t )

k ). However, these estima-
tors are local. We propose to compute an ML on the
whole point cloud simultaneously (not just for each point
independently) by using a mixture of translated Poisson
distributions which accommodates noise and di�erent
classes (characterized by their own dimension and density)
(Haro et al., 2008b). This Translated Poisson Mixture
Model (TPMM) is solved with an Expectation Maxi-
mization algorithm, which leads to explicit estimations of
each cluster dimensionality and density, as well as a soft
clustering according to these parameters; see Haro et al.
(2008b) for details.

We recently applied this technique to HARDI datasets.
ODFs were estimated with the techniques described
in Section 2. We examined the complexity of the raw
Di�usion Weighted Images (points in R30) as well as that
of 4th and 6th order ODFs (R15 and R28 respectively),
and corresponding (sharpened) �ber ODFs (Fig. 10, top).
Clusterings from 4th and 6th order ODFs are almost
identical, as 30 gradients may be insu�cient to �t a
detailed 6th order model. Clusterings obtained from the
ODFs are clearly better than those from the raw HARDI
data and we can readily distinguish (Fig. 10, top) the gray
matter in green, complex white matter in purple (e.g.,
forceps minor/major, anterior/posterior corona radiata
or superior longitudinal fasciculus), anisotropic white
matter in light blue (e.g., genu/splenium of the corpus
callosum or internal capsule), and highly anisotropic
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Figure 10: Top: In
uence of the input model on the labeling of 2 axial slices. Bottom: Increasing complexity in the forceps minor

white matter in blue (e.g., genu of the corpus callosum,
cortico-spinal tract). Using 4th order �ber ODFs had
little e�ect. 6 th order �ber ODFs decreased the clustering
accuracy, perhaps by enhancing high-frequency noise in
the higher-order model. We also compared our complex-
ity/dimension estimates to the known complexity of white
matter con�gurations, in the genu of the corpus callosum
and forceps minor. Callosal �bers are tightly packed at
the interhemispheric plane, but diverge and mingle with
other �ber bundles as they progress toward the frontal
lobes. Our method identi�es and quanti�es this increase
in complexity. The dimension and density of the four
submanifolds both increase (Fig. 10, bottom) as �bers
leave the highly anisotropic genu region.

5. Conclusion

Di�usion MRI and variations such as DTI or QBI have
opened up a landscape of extremely exciting discoveries for
medicine and neuroscience. The development of powerful
analysis tools for these modalities has occupied the medi-
cal image analysis community for about a decade now and
has already resulted in fundamental advances in research
on various neurological disorders such as stroke, cancer or
neurodegenerative diseases. Here we have brie
y reviewed
state-of-the-art mathematical models and computational
techniques for processing di�usion MRI data. We showed

how to e�ciently estimate local di�usion models such as
the di�usion tensor or di�usion/�ber orientation distribu-
tion functions. We then described a framework to identify
of sub-voxel �ber bundle con�gurations (crossing, fanning,
etc.) from QBI data. Along with an overview of current
approaches for white matter tractography, we showed how
this framework can be used to extend QBI deterministic
tractography. We �nally introduced a set of techniques
based on surface evolution or graph-theoretic methods for
clustering white matter structures in DTI or QBI. We also
demonstrated how machine learning techniques can be ap-
plied to such datasets to quantify the non-uniform com-
plexity of the cerebral white matter.
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