of what we do today. The distinct advantage of this arrangement was that the audience had the benefit of studying the papers carefully ahead of time, which enabled an in-depth discussion after the presentation. Not a bad idea!

Fano felt that the meeting was so good that it should have been attended by many more than the 300 or so registrants (80% to 90% of whom tended to attend almost every session). However, he did spot the main weakness that has kept the field “esoteric” and off-limits to wider audiences. It was the narrow and deep technical focus on one hand, and the lack of good up-to-date review and tutorial presentations by appropriate experts. I guess the timid resumption of tutorials in our ISITs (that commenced only in the last decade) represents a step in the direction suggested by Fano already back then.

It was very interesting to read the views and facts in that letter and it made me think that we might benefit from having similar discussions and exchanges today (perhaps not in the Transactions but in the Newsletter). Our members make wonderful scientists but very timid interlocutors who are not very willing to engage in open discourse about these matters. I think we should encourage them to step forth and engage us and get engaged. We would all benefit.

But in that same issue there was, in addition to the Fano letter, a further source of delight. It concerned a brief report of the “Information Theory and Modulation Systems” Committee on its challenging job of developing standard definitions for our most important (still new at the time) technical terms. Here is a sampling of its wisdom (that was modestly followed by a solicitation of comments and feedback from the members)

BIT: A unit of information content or capacity, equal to the information content in a binary decision between equally probable hypotheses.

SIGNAL: The physical embodiment of a message

INFORMATION CONTENT (of a message from a source): The negative logarithm of the probability that that particular message will be emitted by the source

CHANNEL: A transmission path and associated terminal equipment capable of receiving signals at one point and delivering related signals at another point

CODE: A set of transformation rules to be applied to messages or signals

CODE CHARACTER: The signal representation of a discrete value or symbol in a message

CODE ELEMENT: One of a finite set of parts from which code characters may be constructed

And last, but not least:

HARTLY: A unit of information content or capacity, equal to the information content in a decimal decision between ten equally probable states!

You can almost feel the heat and anguish of the committee’s deliberations at that early time.

WSIT’11 – 11th IEEE Winter School of Information Theory

Barcelona, Catalonia (Spain)
March 14th–18th 2011

Continuing the tradition started two decades ago by Han Vinck and Rolf Johannesson, the 11th Winter School of Information Theory took place between the 14th and the 18th of March, 2011, in Barcelona, its southernmost location to date. This edition was jointly hosted by UPF (Universitat Pompeu Fabra) and CTTC (Centre Tecnològic de Telecomunicacions de Catalunya). As usual, the purpose of the week-long event was to provide an opportunity for doctoral students from different universities to gather and interact on a wide range of research subjects related to Information Theory. The 70 available slots filled up rapidly once registration opened. Altogether, over 110 applications for participation were received, a record number for the Winter School thus far.

The organizing committee for this edition included Profs. Angel Lozano and Ezio Biglieri, and Drs. Xavier Mestre, Azadeh Faridi, Vanesa Daza and Deniz Gündüz. The event was financially supported by the IEEE Information Theory Society, the Spanish Ministry of Science and Innovation, the Catalan Research Agency AGAUR, and Universitat de València. This broad support allowed keeping a low registration fee.

The Winter School consisted of morning lectures by distinguished professors and afternoon short talks given by the students themselves. The five lecturers this year were Prof. Helmut Bölcskei (ETH Zürich), who covered the topic of compressed sensing, Prof. Emre Telatar (EPFL), who addressed polar codes, Prof. Gerhard Kramer (Technische Universität München) who lectured...
In Memoriam, Igor Vajda

Igor Vajda, Principal Researcher at the Institute of Information Theory and Automation (ÚTIA) of the Academy of Sciences of the Czech Republic in Prague, and a leading figure in the field of information-theoretic statistical inference, passed away unexpectedly on May 2, 2010.

Igor was born on October 20, 1942, in Martin, Czechoslovakia. After attending elementary and secondary school in Slovakia, he graduated in mathematics at the Military Technical College in Cairo from 1973 to 1976. After the political changeover in Czechoslovakia in 1989 he developed many contacts abroad, especially in Western Europe and the USA. He held many research grants since 1991, frequently traveled, and intensively cooperated in research with colleagues in other countries in the period 1991–2010.

Igor Vajda early recognized the meaning of different types of distances between distributions in information theory and mathematical statistics. One of his major research directions was the investigation of f-divergences $D_f(P||Q) = \int q f(p/q) d\mu$ of distributions P and Q with densities $p = dP/d\mu$ and $q = dQ/d\mu$, and their statistical applications. In early papers he studied the relations between f-divergences and variational distance, the approximation, monotonicity, topological properties of f-divergences and their minimization under constraints.

A first systematic theory of f-divergences was presented in the book Convex Statistical Distances [2], with applications to hypothesis testing, minimum distance estimation, and random processes.

Igor Vajda’s book Theory of Statistical Inference and Information [3], a first version of which was published in Slovak language in 1982, provides a comprehensive treatment of the theory of statistical inference and information. This book is unique in the field, contains a wealth of research results and has become an indispensable source of reference for researchers in the domain.

Igor Vajda used special f-divergences to generalize the Cramer-Rao bound and the theorems of Chernoff and Stein. The extension of the likelihood ratio statistic to divergence-based statistics for testing composite hypotheses was the subject of many papers of which he was the author or a co-author.

In order to compare the empirical distribution \hat{P}_n with the theoretical distribution P_0 from a parametric model, one must turn to a sequence of partitions of the sample space. Igor Vajda and co-authors characterized the suitable speed of refining, and studied sequences of partitions generated by the quantile function.

Another research topic of Igor Vajda was the divergence-based estimation and testing in mathematical statistics. He used the distance $D_f(\hat{P}_n|P_0)$ between the empirical distribution \hat{P}_n and the