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Abstract—The asynchronous-communication model is studied
by means of i.i.d. codes and ML decoding. A random-coding
bound to the joint probability of decoding and synchronization
error is determined and used to recover the region of achievable
information rates and asynchrony exponents.

I. INTRODUCTION AND MAIN RESULTS

Recently, Tchamkerten et al. [1] studied an information-
theoretic model that combines synchronization and coding.
The transmitter sends a message starting at a random time
unknown to the receiver and a known dummy symbol when
idle. The channel output length is assumed to scale ex-
ponentially with the codeword length at the rate of some
asynchrony exponent. The authors investigated the tradeoff
between the achievable rates and the asynchrony exponent. In
previous work, Chase [2] studied a similar problem where the
channel output length is proportional to the codeword length.
Polyanskiy [3] found that the requirement to exactly locate the
codeword does not reduce the largest achievable rate. Wang
[4] studied the tradeoff between the missed detection and
false-alarm exponents in the detection process. More recently,
Weinberger and Merhav [5] provided the optimal tradeoff
between these exponents and that of decoding error.

A common point of these works is the use of the constant-
composition codes and sequential threshold decoders. In this
paper, we study the problem from a complementary point of
view. Firstly, instead of constant-composition codes, we con-
sider a random-coding ensemble where all codeword symbols
are independent and identically distributed (i.i.d). Secondly,
rather than a sequential threshold decoder, we consider a
maximum-likelihood (ML) decoder that observes the whole
output sequence and makes a joint decision on the trans-
mitted codeword and on its starting time. Our contribution
is threefold: 1) we present upper bounds on the average
error probability and lower bounds on the corresponding error
exponent by adapting standard random-coding techniques [6]
to the error events that appear in this joint decision problem;
2) we find the corresponding achievable rates and study the
conditions under which infinite asynchrony exponents are
permitted; and 3) our analysis does not require finite alphabets,
and the results are directly applicable to continuous channels.
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II. PROBLEM FORMULATION

We consider a source that selects a message m and a trans-
mission time t which are respectively equiprobably distributed
over the sets M = {1, . . . ,M} and T = {1, . . . , ν + 1}.
The encoder maps a message m to a length-n codeword
c(m) =

[
c
(m)
1 , c

(m)
2 , . . . , c

(m)
n

]
consisting of letters c(m)

i

from an input alphabet X . The codebook contains M such
codewords c(m), m = 1, . . . ,M . From the codeword c(m)

and the transmission time t, the encoder forms a channel input
sequence xm,t of length n+ν by appending dummy symbols
∗ ∈ X before and after the length-n codeword c(m) as

xm,t =
[
∗, . . . , ∗︸ ︷︷ ︸
t−1

, c
(m)
1 , . . . , c(m)

n︸ ︷︷ ︸
n

, ∗, . . . , ∗︸ ︷︷ ︸
ν−t+1

]
. (1)

We let S =
{
x1,1, . . . ,xM,ν+1

}
denote the set of all possible

channel input sequences.
We assume communication over a discrete memoryless

channel (DMC) described by a probabilistic map W (y|x)
between the input and the channel output y. We denote the
output alphabet by Y and the output sequence by y. Since
the channel is memoryless, the conditional distribution of an
output sequence yi+`i+1 = (yi+1, . . . , yi+`) of length ` given the
input sequence xi+`i+1 = (xi+1, . . . , xi+`) is given by

W `(yi+`i+1|x
i+`
i+1) ,

i+∏̀
j=i+1

W (yj |xj). (2)

When i = 0, we drop both the subscript and superscript from
the corresponding vector notation, e.g., Wn+ν(y|x).

The ML decoder receives the channel output y of length
n+ ν, and forms the estimate

(m̂, t̂) = argmax
(k,l)∈M×T

Wn+ν(y|xk,l), (3)

where ties are broken at random. An error occurs whenever
(m̂, t̂) 6= (m, t). The average error probability is defined by

Pe(C) = P
(
(m̂, t̂) 6= (m, t)

)
. (4)

A rate pair (R,A) is said to be achievable if there exists
a sequence of codebooks Cn with M = benRc codewords
whose average error probability satisfies Pe(Cn) → 0 as
n→∞ for ν = benAc, where A is the asynchrony exponent.
An error exponent E(R,A) is said to be achievable if there



exists a sequence of codebooks Cn such that the average error
probability satisfies

E(R,A) ≤ lim inf
n→∞

− 1

n
logPe(Cn). (5)

III. AN UPPER BOUND ON THE ERROR PROBABILITY

We consider an ensemble of codebooks each with M
pairwise independently generated codewords of length n. In
such an ensemble, the probability of a particular codebook is

P (C) =
M∏
m=1

n∏
i=1

Q
(
c
(m)
i

)
, (6)

where Q(·) is an arbitrary probability assignment on X .
By assuming that ties are broken as errors, the average error

probability averaged over the ensemble is bounded by

P e ≤
1

(ν + 1)M

∑
m,t

Pm,t , (7)

where, for Sm,t , S \ {(m, t)}, Pm,t is given by

Pm,t = P

( ⋃
(k,l)∈Sm,t

{
Wn+ν(Y |Xk,l)

Wn+ν(Y |Xm,t)
≥ 1

})
, (8)

and the probability in (8) is over the joint distribution of the
channel and the codebook.

We partition the set of channel input sequences Sm,t into
several subsets Sim,t according to: 1) the degree of overlap
between the codewords in the transmitted and alternative
sequences; and 2) whether the messages in the transmitted and
alternative sequences coincide or not. Such partitioning eases
the probability of error analysis and allows to gain further
insight on the interplay between the information rate and the
asynchrony exponent. As each Sim,t induces a bound to the
achievable exponent, the overall error probability is dominated
by the lowest of these exponents. As we shall see, five subsets
are sufficient for our purposes. We next describe these subsets.

1) Full overlap, different message: The set S1m,t contains
the channel input sequences x that have the transmission time
l = t for messages k 6= m,

S1m,t =
{
(k, l) ∈M× T : k 6= m, l = t

}
. (9)

Its cardinality is bounded as |S1m,t| =M − 1 ≤M .
2) No overlap, same message: The set S2m,t contains non-

overlapping shifts of the transmitted sequence x,

S2m,t =
{
(k, l) ∈M× T : k = m, |l − t| ≥ n

}
. (10)

Let ωt , min(ν + n, t+ 2n− 2)−max(t, n). Its cardinality
is bounded as |S2m,t| = ν − ωt ≤ ν.

3) No overlap, different message: The set S3m,t contains
non-overlapping shifts of the sequences x of messages differ-
ent from the transmitted one,

S3m,t =
{
(k, l) ∈M× T : k 6= m, |l − t| ≥ n

}
. (11)

Its cardinality is bounded as |S3m,t| = (M − 1)|S2m,t| ≤Mν.

4) Partial overlap, same message: The set S4m,t contains
the overlapping shifts of the transmitted sequence x,

S4m,t =
{
(k, l) ∈M× T : k = m, |l − t| < n, l 6= t

}
. (12)

Its cardinality is bounded as |S4m,t| = ωt ≤ 2n.
The amount of overlap between x and x, which we denote

by δn, is determined by l and t as δn = |l+n− t|. Note that,
as l varies over the range defined by (12), δn varies over the
range 1 to n− 1 twice for the cases l < t and l > t.

5) Partial overlap, different message: The set S5m,t contains
the overlapping shifts of the sequences x corresponding to
other messages than the transmitted one,

S5m,t =
{
(k, l) ∈M× T : k 6= m, |l − t| < n, l 6= t

}
. (13)

Its cardinality is bounded as |S5m,t| = (M −1)|S4m,t| ≤ 2Mn.
As for S4m,t, we let δn denote the overlap between x and x.

A. Decomposition of Error Probabilities
Having defined the different subsets Sim,t, we now apply

the union bound to the union over elements in Sm,t =⋃5
i=1

⋃
(k,l)∈Sim,t

in (8) to obtain Pm,t ≤
∑5
i=1 P

(i)

m,t, where

P
(i)

m,t , P

( ⋃
(k,l)∈Sim,t

{
Wn+ν(Y |Xk,l)

Wn+ν(Y |Xm,t)
≥ 1

})
. (14)

Due to space limitations, we merely sketch our error prob-
ability analysis within each of the subsets Sim,t.

1) Error Probability Analysis for S1m,t: The error events
within S1m,t correspond to those of standard channel decoding
[6, Ch. 5, pp. 135–138]. The average error probability is then
bounded as

P
(1)

m,t ≤Mρ E

E[(W (Y |X)

W (Y |X)

)s∣∣∣X,Y ]ρ
n . (15)

2) Error Probability Analysis for S2m,t: In these error
events, the receiver confuses a noise sequence over the range
t to t+n−1 with the transmitted codeword (i. e. false alarm)
and the transmitted codeword with a noise sequence over the
range l to l + n− 1 (i. e. missed detection).

The analysis starts with the expression

P
(2)

m,t = E

[
P

( ⋃
(m,l)∈S2

m,t

{
Wn+ν(Y |Xm,l)

Wn+ν(Y |Xm,t)
≥ 1

}∣∣∣Xm,t,Y

)]
.

(16)

Then, we apply the bound P
(⋃

lAl
)
≤
(∑

l P(Al)
)ρ

for any
0 ≤ ρ ≤ 1, to (16), and apply Markov’s inequality for s ≥ 0
to the inner probability, to obtain

P
(2)

m,t ≤ E

[( ∑
(m,l)∈S2

m,t

P
(
Wn+ν(Y |Xm,l)

Wn+ν(Y |Xm,t)
≥ 1
∣∣∣Xm,t,Y

))ρ]
(17)

≤ E

[( ∑
(m,l)∈S2

m,t

(
Wn+ν(Y |Xm,l)

Wn+ν(Y |Xm,t)

)s)ρ]
, (18)



where we used that the probability distribution over Xm,l has
mass one at the shifted transmitted sequence for the given l.

After substituting the likelihood ratio, which is given by

Wn+ν(y|x)
Wn+ν(y|x)

=
Wn

(
yt+n−1t | ∗n

)
Wn

(
yt+n−1t |xt+n−1t

)Wn
(
yl+n−1l |xt+n−1t

)
Wn

(
yl+n−1l | ∗n

) ,

(19)

where ∗n is a length-n string of dummy symbols ∗, and
replacing Xt+n−1

t ,Y t+n−1
t and Y l+n−1

l by X,Y and Y
respectively, the error probability in (18) becomes

P
(2)

m,t ≤ E

[( ∑
(m,l)∈S2

m,t

(
Wn

(
Y | ∗n

)
Wn

(
Y |X

) Wn
(
Y |X

)
Wn

(
Y | ∗n

))s)ρ].
(20)

Conditioned on X , Y and Y , the likelihood ratio becomes
a deterministic quantity which is not necessarily the same for
all values of l such that (m, l) ∈ S2m,t. We circumvent this
problem by applying Jensen’s inequality to (20) to get

P
(2)

m,t ≤ E

[( ∑
(m,l)∈S2

m,t

E
[(

Wn
(
Y | ∗n

)
Wn

(
Y |X

) Wn
(
Y |X

)
Wn

(
Y | ∗n

))s])ρ]
(21)

≤ |S2m,t|ρE

[(
E
[(

Wn
(
Y | ∗n

)
Wn

(
Y |X

) Wn
(
Y |X

)
Wn

(
Y | ∗n

))s])ρ].
(22)

where the inner expectation is over Y and the outer expec-
tation is over X and Y and in (22) we used that the inner
expectation in (21) becomes independent of the index l.

Finally, by following standard arguments and bounding the
cardinality as |S2m,t| ≤ ν, (22) can be factorized as

P
(2)

m,t ≤ νρ
E

[(
E
[(

W (Y |∗)
W (Y |X)

W (Y |X)

W (Y |∗)

)s ∣∣∣∣X,Y ]
)ρ]n

.

(23)
3) Error Probability Analysis for S3m,t: In these error

events, the receiver simultaneously confuses the transmitted
codeword with a noise sequence in the range t to t + n − 1
(i. e. missed detection) and a noise sequence with another
codeword than the transmitted one in the range l to l+ n− 1
(i. e. false alarm and decoding error).

The analysis is similar to that in (16)–(22) for S2m,t. Thus,
after substituting the likelihood ratio, which is given by

Wn+ν(y|x)
Wn+ν(y|x)

=
Wn

(
yt+n−1t | ∗n

)
Wn

(
yt+n−1t |xt+n−1t

)Wn
(
yl+n−1l |xl+n−1l

)
Wn

(
yl+n−1l | ∗n

) ,

(24)

and redefining the strings of n letters in the range of the
transmitted codeword, i.e. Xt+n−1

t and Y t+n−1
t , as X and

Y , respectively, and similarly the strings of n letters in the
range of alternative codeword, i.e. X

l+n−1
l and Y l+n−1

l , as

X and Y , respectively, we obtain

P
(3)

m,t ≤ |S3m,t|ρE

[(
E
[(

Wn(Y |∗n)
Wn(Y |X)

Wn(Y |X)

Wn(Y |∗n)

)s])ρ]
,

(25)
where the outer expectation in (25) is over X and Y , the inner
expectation is over X and Y . Remark that, in contrast with
the result for S2m,t, the inner expectation is also performed
over the alternative codeword X .

For a memoryless channel and i.i.d. codewords, (25) can be
expressed in single-letter form by bounding the cardinality as

P
(3)

m,t ≤ (Mν)ρ

(
E

[(
E
[(

W (Y |∗)
W (Y |X)

W (Y |X)

W (Y |∗)

)s∣∣∣∣X,Y ]
)ρ])n

.

(26)

4) Error Probability Analysis for S4m,t: The error events in
S4m,t correspond to alternative sequences obtained by shifting
the transmitted codeword to either direction by a position n−
δn with an overlap of δn = 1, . . . , n− 1 positions.

We first apply the union bound to the union in (14), which
gives a summation over δn as

P
(4)

m,t ≤ 2

n−1∑
δn=1

E

[
P
(
Wn+ν(Y |Xk,t+n−δn)

Wn+ν(Y |Xm,t)
≥ 1

∣∣∣Xm,t,Y

)]
,

(27)

where the factor 2 comes from the fact that, as l varies over
the range defined by (12), δn varies over the range 1 to n− 1
twice for the cases l < t and l > t.

Substituting the likelihood ratio in (28) and applying
Markov’s inequality with s ≥ 0, we obtain (29) where X
and X̃ denote the non-overlapping and overlapping portions
of Xm,t, Y and Y denote the channel outputs corresponding
to X and X̃ , respectively; similarly, X and X are related to
the shifted codeword Xm,l, and Y is the output corresponding
to X . The error probability is thus expressed as the product
of three correlated factors which make further simplification
difficult. Nevertheless, it does not depend on neither the
number of codewords M nor the channel output length ν.

5) Error Probability Analysis for S5m,t: The error events
in S5m,t correspond to partially overlapping codewords for
messages different from the transmitted one.

Following similar steps to those in the analysis of S3m,t
and S4m,t above, we obtain (30) where X and X̃ denote the
non-overlapping and overlapping portions of Xm,t, Y and
Y denote the channel outputs corresponding to X and X̃ ,
respectively; similarly, X and X are related to Xk,l, and Y is
the output corresponding to X . This way, the error probability
can be expressed as the product of three independent factors
since the codewords are pairwise independent. Moreover, the
first and the third factors are reduced to a single expectation,
similar to the expression in (25) that appeared in the analysis
of S3m,t whereas the second factor keeps a double expectation,
similar to the expression in (15) that appeared in the analysis



Wn+ν
(
y|x
)

Wn+ν
(
y|x
) =

Wn−δn
(
yt+n−δn−1t | ∗n−δn

)
Wn−δn

(
yt+n−δn−1t |xt+n−δn−1t

)W δn
(
yt+n−1t+n−δn |x

t+n−1
t+n−δn

)
W δn

(
yt+n−1t+n−δn |x

t+n−1
t+n−δn

)Wn−δn
(
yt+2n−δn−1
t+n |xt+2n−δn−1

t+n

)
Wn−δn

(
yt+2n−δn−1
t+n | ∗n−δn

) . (28)

P
(4)

m,t ≤ 2

n−1∑
δn=1

E

[(
Wn−δn

(
Y | ∗n−δn

)
Wn−δn

(
Y |X

) W δn
(
Y |X

)
W δn

(
Y |X̃

) Wn−δn
(
Y |X

)
Wn−δn

(
Y | ∗n−δn

))s
]
. (29)

P
(5)

m,t ≤ 2Mρ
n−1∑
δn=1

E

[(
E
[(

Wn−δn
(
Y | ∗n−δn

)
Wn−δn

(
Y |X

) W δn
(
Y |X

)
W δn

(
Y |X̃

) Wn−δn
(
Y |X

)
Wn−δn

(
Y | ∗n−δn

))s ∣∣∣∣X, X̃,Y ,Y

])ρ]
. (30)

of S1m,t. Accordingly, Eq. (30) can be bounded as

P
(5)

m,t ≤
n−1∑
δn=1

(2M)ρ E

E[(W (Y |X)

W (Y |X)

)s∣∣∣X,Y ]ρ
δn

× E

E
( W (Y |∗)

W (Y |X)

W (Y |X)

W (Y |∗)

)s ∣∣∣∣X,Y
ρ

n−δn

. (31)

B. Exponents and Achievable Rates
Next, we present the random coding exponents and achiev-

able rates derived from the previous analysis. For a given
distribution Q, we can write the bounds on the previously
given error probabilities in exponential form,

P
(i)

m,t ≤ e−nEr,i(A,R)+o(n), (32)

where o(n) is a term that does not affect the exponential decay
and the exponent Er,i(R,A) is given by

Er,i(R,A) = max
0≤ρ≤1

E0,i(ρ,Q)− ρ(aiA+ biR) (33)

in terms of some Gallager-type functions E0,i(ρ,Q) and
the binary parameters ai and bi that we define next for
i = 1, . . . , 5. In all cases, the optimum s is s = 1

1+ρ and
the functions E0,i(ρ,Q) are concave in ρ.

From (15) (see also [6, Ch. 5, eq. (5.6.14)]), we have that
a1 = 0, b1 = 1, and that the E0,1(·) function is given by

E0,1(ρ,Q) = − log

∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ
 .

(34)
Optimizing Er,1(R,A) over ρ provides an upper bound on

the rate R in terms of the mutual information I(Q;W ) as

R < lim
ρ→0

E0,1(ρ,Q)

ρ
=
∂E0,1(ρ,Q)

∂ρ

∣∣∣∣
ρ=0

= I(Q;W ). (35)

For (23), the binary parameters are a2 = 1 and b2 = 0 and
the corresponding E0,2(·) function can be given as

E0,2(ρ,Q)

= − log

(∑
x

Q(x)
(∑

y

W (y|∗)
ρ

1+ρW (y|x)
1

1+ρ

)1+ρ)
.

(36)

Optimizing Er,2(R,A) over the parameter ρ yields an upper
bound on the asynchrony rate A as

A < lim
ρ→0

E0,2(ρ,Q)

ρ
. (37)

If E0,2(0, Q) = 0, i.e. there is no output y that is unreachable
from the dummy symbol ∗ yet reachable from some input x,
the bound of the asynchrony rate A can be expressed in terms
of a conditional divergence

A <
∂E0,2(ρ,Q)

∂ρ

∣∣∣∣
ρ=0

= D(Wx‖W∗|Q), (38)

where Wx and W∗ stand for W (y|x) and W (y|∗), re-
spectively. An alternative expression of the divergence is
D(Wx‖W∗|Q) = I(Q;W ) + D(QW‖W∗). Otherwise, if
E0,2(0, Q) > 0, we have no constraints, i. e. A < ∞. Note
that D(Wx‖W∗|Q) =∞ in this case too.

For (26), the corresponding binary parameters are a3 =
b3 = 1 and the E0,3(·) function can be given as

E0,3(ρ,Q)

= − log

∑
y

∑
x

Q(x)W (y|∗)
ρ

1+ρW (y|x)
1

1+ρ

1+ρ

.

(39)

Optimizing Er,3(R,A) over ρ yields an upper bound on the
asynchronous exponent A and the information rate R as

R+A < lim
ρ→0

E0,3(ρ,Q)

ρ
. (40)

If E0,3(0, Q) = 0, which again happens if there is no output y
which is unreachable from the dummy symbol ∗ yet reachable
from some other input x, the bound becomes

R+A <
∂E0,3(ρ,Q)

∂ρ

∣∣∣∣
ρ=0

= D(Wx‖W∗|Q). (41)

Finally, it is possible to prove that this constraint dominates
over the one arising from the E0,2(·) function, so we may
safely ignore the former.

The function E0,4(·) does not depend on ρ, only on Q and s.
Although we have not found a simple single-letter expression,
we conjecture that the best possible choice is s = 1

2 and that



E0,4(·) lies between the values of E0,1(1, Q) and E0,2(1, Q).
To any extent, as the bound (29) does not depend on neither
the number of codewords M (b4 = 0) nor the channel output
length ν (a4 = 0), this case does not impose any constraint
on the achievable rates and, if the conjecture is true, it does
not impose any constraints on the exponents neither.

Finally, from (31), we conclude that the binary parameters
are a5 = 1 and b5 = 0 and, after summing the geometric
series over δn, that the E0,5(·) function can be given as

E0,5(ρ,Q) = min
{
E0,1(ρ,Q), E0,3(ρ,Q)

}
. (42)

It is possible to prove that optimizing Er,5(R,A) over ρ yields
an upper bound on the information rate R as

R < lim
ρ→0

E0,5(ρ,Q)

ρ
= I(Q;W ), (43)

IV. EXAMPLE: Z CHANNEL

This section illustrates the application of our bounds to
a Z-channel with crossover probability ε. The input and
output alphabets are X = Y = {0, 1}. The probability of
transmitting X = 0 is q , Q(0). We also consider two
possible assignments of the dummy symbol, namely ∗ = 0
and ∗ = 1. Following the earlier discussion, the only relevant
constraints to the rate pair region come from the first and third
sets. Therefore, the corresponding two E0 functions suffice to
characterize the rate region for the Z-channel.

For ∗ = 0, we have that

E0,1(ρ,Q)

= − log
((
q + (1− q)ε

1
1+ρ
)1+ρ

+ (1− q)1+ρ(1− ε)
)
.

(44)

E0,3(ρ,Q) = − log
(
q + (1− q)ε

1
1+ρ
)1+ρ

. (45)

It can be easily verified that E0,3(0, Q) > 0. According
to (35) and (40) the bounds on the achievable rates are

R < H
(
(1− q)(1− ε)

)
− (1− q)H(ε) (46)

A+R <∞, (47)

where H(p) = −p log(p) − (1 − p) log(1 − p) is the binary
entropy function.

For ∗ = 1, E0,1(ρ,Q) is still given by (44), as this function
does not depend on the assignment of the dummy symbol. The
remaining Gallager-type function is given by

E0,3(ρ,Q) = − log
(
1− q + qε

ρ
1+ρ

)1+ρ
(48)

In this case, E0,3(0, Q) = 0. Therefore, according to (35)
and (41) the bounds on the achievable rates are

R < H
(
(1− q)(1− ε)

)
− (1− q)H(ε) (49)

A+R < −q log ε. (50)

This simple example illustrates the importance of the condition
that there is no output y which is unreachable from the dummy
symbol ∗ yet reachable from some other input x. For ∗ = 0,
arbitrarily large values of A are allowed, whereas for ∗ = 1,
we have a constraint A+R < −q log ε.

V. DISCUSSION

We have derived a random-coding bound to the joint prob-
ability of decoding and synchronization error in asynchronous
communication and used it to recover the region of achievable
information rates and asynchrony exponents.

As defined in the present work, various exponents appear
in (33). These exponents are related to a partitioning of the set
of possible error events into several subsets. As each subset
provides an achievable exponent, the overall error probability
behaviour is determined by the minimum of these exponents.
Moreover, these subsets serve to illustrate connections to
different detection and coding problems. For instance, the
decoding error exponent is determined by (34). The minimum
of false alarm and missed detection exponents is determined by
(36). In contrast to other detection problems, false alarm and
missed detection happen simultaneously since the ML decoder
always outputs an estimate of a codeword and its starting time.
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