Coded Modulation with Mismatched Power Control over Block-Fading Channels

T`ung T. Kim
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544, USA
Email: thanhkim@princeton.edu

Albert Guillén i Fàbregas
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK
Email: albert.guillen@eng.cam.ac.uk

Abstract—Communication over delay-constrained block-fading channels with discrete inputs and imperfect channel state information at the transmitter (CSIT) is studied. The CSIT mismatch is modeled as a Gaussian random variable, whose variance decays as a power of the signal-to-noise ratio (SNR). We focus on the large-SNR behavior of the outage probability when transmit power control is used. We derive the outage exponent as a function of the system parameters, including the CSIT noise variance exponent and the exponent of the peak power constraint. It is shown that CSIT, even if noisy, is always beneficial and leads to significant gains in terms of exponents. It is also shown that when precoders are used at the transmitter, further exponent gains can be attained at the expense of higher decoding complexity.

I. INTRODUCTION

Temporal power control across fading states can lead to dramatic improvement in the outage performance of block fading channels [1]. The intuition behind this phenomenon is that power saved in particularly bad channel conditions can be used in good channel realizations. Power control over block fading channels was originally studied under the idealistic assumptions of perfect channel state information (CSI) at the transmitter (CSIT) and Gaussian signal constellations [1]. Acquiring perfect CSIT is however a challenging task due to the temporal variation of wireless media, as well as due to the processing and transmission.

This work considers a block fading channel with discrete input, where the transmitter has access to a noisy version of the CSI. Similarly to [2], we model the CSIT noise as a Gaussian random variable whose variance decays as a negative power of the SNR. The rate of decaying of the CSIT noise can also be related to practical parameters in wireless systems [3]. In sharp contrast to the assumption of using Gaussian codebooks [2]–[4], the current work assumes that the input symbols are taken from a discrete distribution such as M-QAM or PSK. Focusing on the high signal-to-noise ratio (SNR) regime, we establish the diversity gain of block fading channels under the noisy CSIT model of interest. Note that unlike in the diversity–multiplexing tradeoff analysis [5] where the code rate grows with the SNR, herein we keep the constellation size to be 2^M at all values of the SNR and we do not let the code rate scale with the SNR. The results will shed some light into the interplay in the high-SNR regime between the number of receive antennas, the number of fading blocks, the constellation size, the code rate, as well as the SNR exponent of the CSIT noise variance and the peak exponent constraint.

II. SYSTEM MODEL

Consider transmission over a block-fading channel with B sub-channels, where each sub-channel has a single transmit and m receive antennas (cf. Fig. 1). The mutually independent channel vectors h_1, \ldots, h_B have independent and identically distributed (i.i.d.) complex Gaussian components with zero mean and unit variance. The channel gains are constant during one fading block but change independently from one block to the next. This models a typical delay-limited scenario in wireless communications, where the delay constraint dictated by higher-layer applications prevents the system from fully exploiting time diversity [1].

The corresponding discrete-time complex baseband input-output relation for the ith sub-channel can be written as

$$Y_i = h_i \sqrt{P_i} x_i^T + W_i$$ \hspace{1cm} (1)

where $Y_i \in \mathbb{C}^{m \times L}$ is the received signal matrix corresponding to block i, $x_i \in \mathbb{C}^L$ is the transmitted vector in block i, x_i^T denotes the transpose of x_i, and $W_i \in \mathbb{C}^{m \times L}$ denotes the complex additive white Gaussian noise whose entries are i.i.d. with zero mean and unit variance. We denote the block length by L and the power in block i by P_i. Hence, a codeword corresponds to BL channel uses.

We assume perfect CSIR, i.e., the receiver has perfect knowledge about all the channel gains and the powers P_i. Furthermore, we assume that the transmitter has access to a noisy version \hat{h}_i of the true channel realization h_i, so that

$$h_i = \hat{h}_i + e_i, \quad i = 1, \ldots, B$$ \hspace{1cm} (2)

where $e_i \in \mathbb{C}^m$ is the CSIT noise vector, independent of \hat{h}_i, with i.i.d. Gaussian components with zero mean and variance σ_e^2. This model of the CSIT has been well motivated in many different contexts, such as in scenarios with delayed feedback, noisy feedback, or in systems exploiting channel reciprocity [6], [7]. We further assume, as in [2], that the CSIT noise variance decays as a power of the SNR, $\sigma_e^2 = \text{SNR}^{-d_e}$, for some $d_e > 0$. Thus we consider a family of channels where the second-order statistic of the CSIT noise varies with...
SNR. If the CSIT for example is estimated from the reverse link (exploiting reciprocity in a TDD system), its quality will depend on the SNR of reverse link and not the forward link. However, while the SNRs of the forward and reverse links are different, this difference will be fully captured by changing the values of d_{out}. For convenience, we introduce the normalized channel gains $\bar{h}_i = \sqrt{\gamma} h_i$. Given \bar{h}_i, then h_i is complex Gaussian with mean $\frac{\bar{h}_i}{\gamma}$ and a scaled identity covariance matrix.

Let $\gamma_i \triangleq \|h_i\|^2$ be the fading magnitude of block i and $\gamma = [\gamma_1 \cdots \gamma_B]$. Further denote $\bar{\gamma}_i \triangleq \|\bar{h}_i\|^2$, $\bar{\gamma} \triangleq [\bar{\gamma}_1 \cdots \bar{\gamma}_B]$ and $\bar{\gamma} \triangleq [\bar{\gamma}_1 \cdots \bar{\gamma}_B]$.

III. Preliminaries

We assume transmission at a fixed-rate R using a coded modulation scheme $\mathcal{M} \subset \mathbb{C}^{BL}$ of length BL constructed over a signal constellation $X \subset \mathbb{C}$ of size 2^M such as 2M-PSK or QAM. We denote the codewords of \mathcal{M} by $x = [x_1^T \cdots x_B^T]^T \in \mathbb{C}^{BL}$. We assume that the signal constellation X is zero mean and normalized in energy, i.e., $\mathbb{E}[|X|^2] = 1$, where X denotes the corresponding random variable. We denote the input distribution as $Q(x)$. The instantaneous input-output mutual information of the channel is given by $I(\gamma) = \frac{1}{2} \sum_{i=1}^{BL} I_X(P_i|\gamma_i)$ where

$$I_X(s) = \mathbb{E} \left[\log_2 \frac{e^{-|Y - \sqrt{s}X|^2}}{\sum_{x' \in X} e^{-|Y - \sqrt{s}x'|^2}} \right]$$

(3)

is the input-output mutual information of an AWGN channel with SNR s using the signal constellation X.

The outage probability is commonly defined as $P_\text{out}(R) \triangleq \Pr\{I(\gamma) < R\}$. In this work, we are interested in the SNR exponents of the outage probability [5], [10], i.e., $d_{\text{out}} \triangleq \lim_{\text{SNR} \to \infty} -\frac{\log P_\text{out}(R)}{\log \text{SNR}}$. We adopt the notation $g(\text{SNR}) = \text{SNR}^{a} \iff \lim_{\text{SNR} \to \infty} \log \frac{g(\text{SNR})}{\log \text{SNR}} = a$.

It has been shown in [10], [11] that the outage probability without CSIT is given by $d_{\text{out}} = md_{\text{sh}}(R)$ where

$$d_{\text{sh}}(R) \triangleq 1 + \left[B \left(1 - \frac{R}{M} \right) \right] = B - \frac{BR}{M} + 1, \quad (4)$$

with $\lfloor x \rfloor$ being the largest integer that is not larger than x and $\lfloor x \rfloor$ being the smallest integer that is not smaller than x, is the Singleton bound on the block-diversity of the coded modulation scheme \mathcal{M} [10], [12], [13].

The transmitter can adapt the transmitted powers P_i to the (noisy) channel conditions $\hat{\gamma}_i$. We consider power allocation algorithms that treat the noisy CSIT $\hat{\gamma}_i$ as if it were perfect.

We consider an average power constraint, such that

$$\mathbb{E} \left[\frac{1}{B} \sum_{i=1}^{B} P_i(\hat{\gamma}_i) \right] = \mathbb{E} [P(\hat{\gamma})] \leq \text{SNR} \quad (5)$$

where $P(\hat{\gamma}) = \frac{1}{B} \sum_{i=1}^{B} P_i(\hat{\gamma}_i)$ is the instantaneous average power allocated given $\hat{\gamma}_i$. The SNR herein has the meaning of the average transmit power over infinitely many fading blocks.

We introduce a peak-to-average power constraint

$$P(\hat{\gamma}) \leq \text{SNR}^{d_{\text{peak}}} \quad (6)$$

where d_{peak} is interpreted as the peak-to-average power SNR exponent. The case $d_{\text{peak}} = 1$ represents a system whose allocated power is dominated by the peak-power constraint. By allowing d_{peak} to take an arbitrary value, we can model a family of systems with different behavior in the peak power constraint. In the high-SNR regime of interest, we can for example scale the right hand side of (6) by a constant without changing any conclusion. That is, any constant, finite ratios between the peak and the average power provides the same asymptotic behavior as $d_{\text{peak}} = 1$.

The corresponding minimum-outage power allocation rule is the solution to the following problem

$$\begin{align*}
\text{Minimize} & \quad P_\text{out}(R) \\
\text{subject to} & \quad \mathbb{E} \left[\frac{1}{B} \sum_{i=1}^{B} P_i(\hat{\gamma}_i) \right] \leq \text{SNR} \\
& \quad \frac{1}{B} \sum_{i=1}^{B} P_i(\hat{\gamma}_i) \leq \text{SNR}^{d_{\text{peak}}} \\
& \quad P_i(\hat{\gamma}_i) \geq 0, \quad i = 1, \ldots, B.
\end{align*}$$

(7)

Solving the minimum-outage power allocation problem even numerically is difficult in general, given our noisy CSIT model and the discreteness of X. Nevertheless, we can characterize the asymptotic behavior of the optimal solution in the high SNR regime. Following [5], note that the outage exponent of the optimal algorithm is the same as that of a power control system that allocates power uniformly across the blocks, i.e., $P_i(\hat{\gamma}) = P(\hat{\gamma}), \forall i = 1, \ldots, B$.

IV. Asymptotic Outage Behavior

A. Main Result

In this section, we study the asymptotic behavior of the outage probability. In particular, our main results in terms of outage SNR exponents are stated as follows.

Theorem 1: Consider transmission at rate R over a block-fading channel described by (1) with Rayleigh fading and mismatched CSIT modeled by (2) with inputs drawn from X. The transmitter uses power control with an average power...
constraint (5) and a peak-to-average power constraint (6). Then, the outage exponents are given by
\[
d(R, d_e, d_{\text{peak}}) = \begin{cases} md_{\text{sb}}(R)d_{\text{peak}} & d_{\text{peak}} \leq 1 + md_{\text{sb}}(R)d_e, \\ md_{\text{sb}}(R) (1 + md_{\text{sb}}(R)d_e) & \text{otherwise}. \end{cases}
\] (8)

Proof: See Appendix A.

In Fig. 2 we plot the outage exponents for \(B = 4, m = 1 \) and \(d_{\text{peak}} > 1 + md_{e}d_{\text{sb}}(R) \).

![Fig. 2. Outage exponents for \(B = 4, m = 1 \) and \(d_{\text{peak}} > 1 + md_{e}d_{\text{sb}}(R) \).](image)

order of magnitude as \(\sigma_2^2 \). When \(d_{\text{peak}} \) is smaller, however, the system cannot “invert” the worst channel realizations and the peak exponent becomes the limiting factor.

B. Improving the Outage Exponent with Rotations

In [14], it is shown that a precoding technique can be used to improve the outage exponent over fading channels with discrete inputs. We demonstrate how that idea can be applied in the current noisy CSIT setting of interest to further improve the outage exponents. To simplify the presentation, we remove the peak exponent constraint (setting \(d_{\text{peak}} = \infty \)), focusing only on the effects of the CSIT noise.

We briefly recall the precoding technique of [14]. First consider reformatting the codewords \(x \in M \) as matrices \(X \in \mathbb{C}^{B \times L} \). We now obtain \(X \) as
\[
X = MS
\] (9)

where
\[
M = \begin{pmatrix} M_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & M_K \end{pmatrix} \in \mathbb{C}^{B \times B}
\] (10)

is a unitary block-diagonal matrix, and the entries of \(S \in \mathbb{C}^{B \times L} \) belong to the signal constellation \(X \) with size \(2^M \) symbols. The matrices \(M_1, \ldots, M_K \in \mathbb{C}^{N \times N} \) are the \(K \) unitary rotation matrices of dimension \(N \) each. \(M_k(s - s') \neq 0 \) componentwise, for all \(x \neq x' \in X^N \). This implies that if the vector \((s - s') \) has a positive number of nonzero entries, then, its rotated version will have all \(N \) entries different from zero.

According to [14], with no CSIT we obtain the exponent \(d_{\text{out}} = md_{\text{sb}}^\text{rot}(R) \) where
\[
d_{\text{rot}}(R) = N \left(1 + \left\lceil \frac{B}{N} \left(1 - \frac{R}{M} \right) \right\rceil \right) = B + N - N \left\lceil \frac{BR}{MN} \right\rceil.
\]

With noisy CSIT, completely similarly to the previous section we have the following result.

Theorem 2: Consider transmission over a block-fading channel described by (1) with mismatched CSIT modeled by (2) with inputs obtained as the rotation of a coded modulation scheme over \(X \) as described by (9), using full diversity rotations. The transmitter uses power control with an average power constraint (5). Then, the outage exponents are given by
\[
d(R, d_e) = md_{\text{sb}}^\text{rot}(R) \left(1 + md_{\text{sb}}^\text{rot}(R)d_e \right) .
\] (11)

We illustrate in Fig. 3 the effect of full-diversity rotation matrices on the outage exponent of the coded modulation system with mismatched CSIT. This precoding method clearly leads to a higher diversity gain even at high code rates, at the expense of increasing receiver complexity.

In the case \(N = B \), i.e. when a single matrix that rotates all \(B \) output symbols is used, then \(d(R, d_e) = mB(1 + mBd_e) \). This is the maximum diversity gain we can achieve in this scenario, even with codes drawn from a Gaussian ensemble [3]. However, the receiver complexity will increase exponentially in \(N \). Note also in terms of exponents, there is nothing to gain...
in optimizing the full precoding matrix. Finally, we notice that determining the outage exponent in the more general multiple-input multiple- transmit settings remains an open problem.

APPENDIX A

PROOF OF THEOREM 1 (SKETCH)

Let us invoke the standard change of variables as in [5],
\[\hat{\alpha}_i = -\frac{\log \gamma_i}{\log \text{SNR}} \quad \text{and} \quad \hat{\alpha}_i = -\frac{\log \hat{P}(\gamma_i)}{\log \text{SNR}}. \]
We also perform the change of variable \(\pi(\hat{\gamma}) \equiv \pi(\hat{\alpha}) = \frac{\Delta \log \hat{P}(\gamma_i)}{\log \text{SNR}}. \)

The power constraint (5) asymptotically becomes [3]
\[\int \text{SNR}^{\pi(\hat{\gamma})} f(\hat{\gamma})d\hat{\gamma} \leq \text{SNR}^1. \] \hspace{1cm} (12)

The \(\hat{\gamma}_i \)'s are mutually independent and follow Chi-square distribution with \(2m \) degrees of freedom. Also, \(E[\gamma_i] = E[\|h_i\|^2] - E[\|e_i\|^2] \approx \text{SNR}^0. \)

Changing variables from \(\hat{\gamma} \) to \(\hat{\alpha} \), we readily obtain
\[\int_{\hat{\alpha}_i \in \mathbb{R}_+^n} \text{SNR}^{\pi(\hat{\alpha})} \text{SNR}^{-m \sum_{i=1}^n \hat{\alpha}_i} d\hat{\alpha} \leq \text{SNR}^1. \] \hspace{1cm} (13)

Herein we have neglected the terms irrelevant to the SNR exponent, noticing that for any set containing \(\hat{\alpha}_i < 0 \), its probability measure decays exponentially in SNR [5]. Applying Varadhan’s integral lemma we then have
\[\sup_{\hat{\alpha} \in \mathbb{R}_+^n} \left\{ \pi(\hat{\alpha}) - m \sum_{i=1}^B \hat{\alpha}_i \right\} \leq 1. \] \hspace{1cm} (14)

Since outage probability is a non-increasing function of transmit power, we conclude that with the optimal power allocation,
\[\pi(\hat{\alpha}) = \min \left(d_{\text{peak}}, 1 + m \sum_{i=1}^B \hat{\alpha}_i \right) \] \hspace{1cm} (15)
where we need to introduce \(d_{\text{peak}} \) to take into account (6).

From [10] it is known that as SNR \(\to \infty \) the mutual information in sub-channel \(i \), \(I_X(P(\hat{\gamma}_i)) \), tends to either \(M \) or 0 depending only on the behavior of the term
\[P(\hat{\gamma}_i) = \text{SNR}^{\min(d_{\text{peak}}, 1 + m \sum_{j=1}^B \hat{\alpha}_j - d_e - \hat{\alpha}_i)}. \] \hspace{1cm} (16)

In particular, if \(\hat{\alpha}_i \leq \pi(\hat{\alpha}) - d_e \) then \(I_X(P(\hat{\gamma}_i)) \to M \) bits per channel use. Otherwise \(I_X(P(\hat{\gamma}_i)) \to 0 \).

Thus the asymptotic outage set is given by
\[O = \{ \hat{\alpha}, \hat{\alpha} : \sum_{i=1}^B 1 \left(\hat{\alpha}_i \leq \min \left(d_{\text{peak}}, 1 + m \sum_{j=1}^B \hat{\alpha}_j \right) - d_e \right) < \frac{BR}{M} \} \]

where \(1(\cdot) \) is the indicator function. We then have
\[P_{\text{out}}(R) = \int_O f(\hat{\alpha}) f(\hat{\alpha}) d\hat{\alpha} d\hat{\alpha}. \] \hspace{1cm} (17)

Notice that \(f(\gamma|\hat{\gamma}) = \prod_{i=1}^B f(\gamma_i|\hat{\gamma}_i) \) is a non-central chi-square one with \(2m \) degrees of freedom. Using a result in [3], we can asymptotically expand the integral (17), showing that \(d(R; d_e, d_{\text{peak}}) = \min(d_0, \ldots, d_B) \) with \(d_n \) being defined such that
\[\int_{O \cap B_n} \prod_{i=1}^{B-n} \text{SNR}^{-\hat{\alpha}_i} d\hat{\alpha}_i \prod_{j=B-n+1}^B \text{SNR}^{-\hat{\alpha}_j} d\hat{\alpha}_j \leq \text{SNR}^{-d_n} \]

where
\[B_n \triangleq \{ \hat{\alpha}, \hat{\alpha} : \{ \hat{\alpha}_1 > 0, \hat{\alpha}_1 \geq d_e \} \cap \cdots \cap \{ \hat{\alpha}_{B-n} > 0, \hat{\alpha}_{B-n} \geq d_e \} \cap \{ 0 \leq \hat{\alpha}_{B-n+1} - d_e, \hat{\alpha}_{B-n+1} = \hat{\alpha}_{B-n+1} - d_e \} \cap \cdots \cap \{ 0 \leq \hat{\alpha}_B < d_e, \hat{\alpha}_B = \hat{\alpha}_B - d_e \} \].

Thus applying Varadhan’s integral lemma gives
\[d_n = \inf_{\hat{\alpha}, \hat{\alpha} \in O \cap B_n} \left\{ m \sum_{i=1}^B \hat{\alpha}_i + m \sum_{j=1}^{B-n} \hat{\alpha}_j \right\}. \] \hspace{1cm} (18)

Over \(B_n \), we have \(\hat{\alpha}_i = \hat{\alpha}_i - d_e \) for all \(i \geq B - n + 1 \), thus
\[O = \left\{ \hat{\alpha}, \hat{\alpha} : \sum_{i=1}^{B-n} 1 \left(\hat{\alpha}_i \leq \min \left(d_{\text{peak}}, 1 + m \sum_{j=1}^B \hat{\alpha}_j \right) - d_e \right) + \sum_{i=B-n+1}^B 1 \left(\hat{\alpha}_i \leq \min \left(d_{\text{peak}}, 1 + m \sum_{j=1}^B \hat{\alpha}_j \right) \right) < \frac{BR}{M} \right\}. \]

To compute \(d_n \), we consider two mutually exclusive cases.
Case 1: \(d_{\text{peak}} < 1 + m \sum_{j=1}^B \hat{\alpha}_j \). Denote the SNR exponent over the intersection of this region and \(B_n \) as \(d_n^{(1)} \).

Case 1.1: If \(d_{\text{peak}} < d_e \) then \(1(\hat{\alpha}_i \leq d_{\text{peak}} - d_e) = 0 \), \(\forall i \in \{1, \ldots, B - n\} \). The outage set reduces to
\[O = \left\{ \hat{\alpha} : \sum_{i=B-n+1}^B 1 \left(\hat{\alpha}_i \leq d_{\text{peak}} \right) < \frac{BR}{M} \right\}. \] \hspace{1cm} (19)

Because for \(i = 1, \ldots, B - n \), the terms \(\hat{\alpha}_i \) and \(\hat{\alpha}_i \) are not present in the outage set, we have the optimal solution to (18) \(\hat{\alpha}_i = \cdots = \hat{\alpha}_B = 0 \) and \(\sum_{i=1}^{B-n} \hat{\alpha}_i = \max(d_{\text{peak}} - 1, m(B-n)d_e) \), due to the constraint \(d_{\text{peak}} < 1 + m \sum_{j=1}^B \hat{\alpha}_j \).
After some manipulation, we have that if $d_{\text{peak}} < d_n$ then
\[
d_n^{(1)} = \begin{cases} m(B - n)d_e & \text{if } \frac{BR}{M} > n, \\ m(B - n)d_e + md_{\text{peak}}(n - \lceil \frac{BR}{M} \rceil + 1) & \text{if } \frac{BR}{M} \leq n. \end{cases}
\]

Case 1.2. On the other hand, if $d_{\text{peak}} \geq d_n$, then for $i = B - n + 1, \ldots, B$ we have $1(\tilde{\alpha}_i \leq d_{\text{peak}}) = 1$ because in B_n, $\tilde{\alpha}_i < d_n$ for these values of i. The outage set reduces to
\[
\mathcal{O} = \left\{ \tilde{\alpha}, \tilde{\alpha}_i : \sum_{i=1}^{B-n} 1(\tilde{\alpha}_i \leq d_{\text{peak}} - d_e) < \frac{BR}{M} - n \right\}.
\]

Note that if $\frac{BR}{M} \leq n$ then $d_n^{(1)} = \infty$ because the set of “bad” channel realizations is empty [4].

After some manipulation, we have that if $d_{\text{peak}} \geq d_n$, then
\[
d_n^{(1)} = \begin{cases} m(d_{\text{peak}} - d_e) & \text{if } \frac{BR}{M} > n, \\ \infty & \text{if } \frac{BR}{M} \leq n. \end{cases}
\]

Case 2: $d_{\text{peak}} \geq 1 + m \sum_{j=1}^{B} \tilde{\alpha}_j$. Note that over B_n we have $\sum_{j=1}^{B} \tilde{\alpha}_j \geq (B-n)d_e$ thus Case 2 can only happen if $d_{\text{peak}} \geq 1 + m(B-n)d_e$. For n such that $d_{\text{peak}} < 1 + m(B-n)d_e$, we use the convention $d_n^{(2)} = \infty$. Then, over B_n
\[
\mathcal{O} = \left\{ \tilde{\alpha}, \tilde{\alpha}_j : \sum_{i=1}^{B-n} 1(\tilde{\alpha}_i \leq 1 + \sum_{j=1}^{B} \tilde{\alpha}_j - d_e) < \frac{BR}{M} - n \right\}.
\]

If $\frac{BR}{M} \leq n$ then the outage probability decays exponentially in SNR. We obtain $\tilde{\alpha}_1 = \cdots = \tilde{\alpha}_{B-n} = d_e$ and $\tilde{\alpha}_{B-n+1} = \cdots = \tilde{\alpha}_{B} = 0$. We also have $\tilde{\alpha}_j = 1 + m(B-n)d_e - d_e$ for exactly $B - n - \lceil \frac{BR}{M} - n \rceil + 1$ of the $\tilde{\alpha}_i$'s, and the other $\tilde{\alpha}_i$'s are zero. Thus
\[
d_n^{(2)} = \begin{cases} m(B - n)d_e + m(B - n - \lceil \frac{BR}{M} - n \rceil + 1) & \text{if } \frac{BR}{M} > n, \\ \infty & \text{if } \frac{BR}{M} \leq n. \end{cases}
\]

We combine the results in Case 1 and 2 to find $d(R, d_e, d_{\text{peak}})$. If $d_{\text{peak}} < d_n$ then we have
\[
d(R, d_e, d_{\text{peak}}) = \min(d_n^{(1)}, d_1^{(1)}, \ldots, d_B^{(1)}) = md_{\text{peak}} \left(B - \left\lceil \frac{BR}{M} \right\rceil + 1 \right).
\]

We now consider the case $d_{\text{peak}} \geq d_n$, where the $d_n^{(1)}$’s are given by (22). There are three possibilities.

Case A: If $d_{\text{peak}} \geq 1 + mBd_e$, then $d_{\text{peak}} \geq 1 + m(B-n)d_e$, \forall n = 0, \ldots, B. Thus
\[
d_n^{(1)} = \begin{cases} m(d_{\text{peak}} - d_e) & \text{if } \frac{BR}{M} > n, \\ \infty & \text{if } \frac{BR}{M} \leq n. \end{cases}
\]

It can then be shown that
\[
d(R, d_e, d_{\text{peak}}) = \min(d_1^{(2)}, d_2^{(2)}, \ldots, d_B^{(2)}) = m(B - \left\lceil \frac{BR}{M} \right\rceil + 1) \left(1 + m(B - \left\lceil \frac{BR}{M} \right\rceil + 1) d_e \right).
\]

Case B: $1 + md_e \left(B - \left\lceil \frac{BR}{M} \right\rceil + 1 \right) < d_{\text{peak}} < 1 + mBd_e$. This implies $\frac{BR}{M} \geq \left\lceil \frac{BR}{M} \right\rceil - 1 > B - \frac{d_{\text{peak}} - 1}{md_e}$. It can be shown that in this case
\[
d(R, d_e, d_{\text{peak}}) = m \left(B - \left\lceil \frac{BR}{M} \right\rceil + 1 \right) \left(1 + m(B - \left\lceil \frac{BR}{M} \right\rceil + 1) d_e \right).
\]

Case C: $d_{\text{peak}} \leq 1 + md_e \left(B - \left\lceil \frac{BR}{M} \right\rceil + 1 \right)$. This implies $\frac{BR}{M} \leq 1 - \left(B - \frac{d_{\text{peak}} - 1}{md_e} \right)$, leading to $d_{\text{peak}} < 1 + md_e(B-n)$. Hence from (22) we have
\[
d_n^{(1)} = \begin{cases} m(d_{\text{peak}} - d_e) & \text{if } \frac{BR}{M} > n, \\ \infty & \text{if } \frac{BR}{M} \leq n. \end{cases}
\]

Since $n < \frac{BR}{M}$ leads to $d_{\text{peak}} < 1 + md_e(B-n)$, we also have $d_n^{(2)} = \infty$, \forall n. Thus
\[
d(R, d_e, d_{\text{peak}}) = \min(d_n^{(1)}, \ldots, d_B^{(1)}) = md_{\text{peak}} \left(B - \left\lceil \frac{BR}{M} \right\rceil + 1 \right).
\]

REFERENCES

