Coding in the Block-Erasure Channel

Albert Guillén i Fàbregas and Qi Tang
Institute for Telecommunications Research
University of South Australia
SPRI Building - Mawson Lakes Blvd.
Mawson Lakes SA 5095, Australia
{albert.guillen,qi.tang}@unisa.edu.au

Abstract— We study an M-ary block-erasure channel with B blocks, where with probability \(\epsilon \), a block of \(L \) coded symbols is erased. We study the behavior of the error probability of coded systems over such channels, and show that, if the code is diversitywise maximum-distance separable, its word error probability is equal to the outage probability, which admits a very simple expression. This paper is intended to complement the error probability analysis in previous work by Lapidoth and shed some light on the design of coding schemes for nonergodic channels.

I. INTRODUCTION

The block-erasure channel is a very simplified model of a fading channel where parts of the codeword are completely erased by a deep fade of the channel [1]. This channel corresponds to the large signal-to-noise ratio (SNR) regime of the block-fading channel [2], [3], and its interest lies on its simplicity and non-ergodicity, typical from many real wireless communication systems, such as orthogonal frequency division multiplexing (OFDM) or frequency-hopped systems. In this context, non-ergodicity means that the transmitted codeword spans only a finite number \(B \) of independent realizations (degrees of freedom) of the channel irrespectively of its length.

In this paper we study the problem of fixed-rate transmission over the block-erasure channel. This paper complements the previous error probability analysis for convolutional codes in block-erasure channel done by Lapidoth in [1]. In particular, we derive simple expressions for the word and bit error probabilities of general codes of a fixed rate, as well as tight bounds. We find that maximum-distance separable (MDS) codes have the lowest possible error probability and are therefore optimal for this channel. We also study the performance of the random low-density parity-check (LDPC) code ensemble with iterative decoding, which is particularly suited for the binary erasure channel (BEC), and show that only strictly capacity achieving ensembles over the BEC are MDS over the block-erasure channel.

II. CHANNEL MODEL

We study a block-erasure channel with \(B \) blocks. With probability \(\epsilon \), a block of \(L \) symbols is completely erased and with probability \(1 - \epsilon \), a block of \(L \) coded symbols is received correctly (noiseless sub-channel), independently from block to block. Consider the transmission of an \(M \)-ary code \(\mathcal{C} \) of length \(N = BL \) and rate \(R = \frac{L}{B} \) bits per channel use, where \(K = \log_2 |\mathcal{C}| \).

Also, let \(\mathbf{x} = (x_1, \ldots, x_B) \in \{0, 1, \ldots, M-1\}^B \) be the codewords of \(\mathcal{C} \). We denote erasures by "\(? \). The block-erasure channel is illustrated in Figure 1.

![Figure 1: The block-erasure channel with \(B \) blocks. The symbols of block \(b \), \(b = 1, \ldots, B \), are erased with probability \(\epsilon \). The symbols of block \(b \), \(b = 1, \ldots, B \), are received correctly (noiseless channel) with probability \(1 - \epsilon \).](image)

Define the erasure pattern vector \(\mathbf{e} = (e_1, e_2, \ldots, e_B) \in \{0, 1\}^B \), whose \(b \)-th component is \(e_b = 1 \) if the block is erased and \(e_b = 0 \) otherwise. Thus, \(P(e_b = 1) = \epsilon \) and \(P(e_b = 0) = 1 - \epsilon \), namely, the components of the erasure pattern \(\mathbf{e} \) are i.i.d. Bernoulli random variables (with success probability \(\epsilon \)). We assume that the receiver has channel state information (CSI), i.e., the receiver knows the erasure pattern \(\mathbf{e} \).

III. ERROR PROBABILITY ANALYSIS

In this section we define the word and bit error probabilities of coded schemes over the block-erasure channel described in the previous section. We also discuss the information theoretic limits of the channel.

We define the word error probability as the probability of decoding in favor of a codeword \(\mathbf{x} \) when codeword \(\mathbf{x} \) was transmitted, averaged over all possible transmitted codewords \(\mathbf{x} \in \mathcal{C} \):

\[
P_{\text{err}}^{(\mathbf{x})}(\epsilon) = \frac{1}{|\mathcal{C}|} \sum_{\mathbf{x} \in \mathcal{C}} P_{\text{err}}(\mathbf{x} \neq \mathbf{x}).
\]

We further consider linear codes only, and thus, the error probability does not depend on the transmitted codeword. We then assume the transmission of the all-zero codeword, i.e., \(\mathbf{x} = (0, \ldots, 0) \). Consider the maximum likelihood (ML) decoder,

\[
\hat{\mathbf{x}} = \arg \max_{\mathbf{y} \in \mathcal{C}} p(y | \mathbf{x})
\]
and define the subsets

\[C(e) = \{ x \in C \mid e_b = 0, \ x_b = (0, \ldots, 0) \ \forall b \in (1, \ldots, B) \} \]

(3)
as the subset of codewords that differ only in the erased symbols. Obviously, the transmitted codeword belongs to \(C(e) \) and by definition \(|C(e)| \geq 1 \), \(\forall e \in \mathbb{F}_B^k \). In words, \(C(e) \) is the set of codewords that, once erased by a given erasure pattern, look identical to the receiver. In such a case, the ML decoder will resolve the ties evenly, and will make an error with probability [1]

\[P_e^w(e|\mathbf{a}) = 1 - \frac{1}{|C(e)|} \]

(4)

which implies that

\[P_e^w(e) = \mathbb{E}[P_e^w(e|\mathbf{a})] = \mathbb{E} \left[1 - \frac{1}{|C(e)|} \right]. \]

(5)

We remark that the only source of error (randomness) in the decoding process is essentially how the ML decoder resolves the ties between the equally likely candidates in \(C(e) \).

We further define the average bit error probability as

\[P_e^b(e) = \frac{1}{K} \sum_{b=1}^{K} P_{e,b}(e) \]

(6)

where \(P_{e,b}(e) \) is the probability of error of the \(b \)-th information bit.

Definition 1: The block-diversity of a code is defined as

\[\delta = \min_{x \neq \mathbf{0}} \left\{ \left| \{ b \in (1, \ldots, B) \mid x_b \neq 0 \} \right| \right\}. \]

(7)

In words, \(\delta \) represents the limit number erased blocks that \(C \) can tolerate. Specifically, if \(\delta \leq \sum_{b=1}^{B} e_b, \ |C(e)| \geq 1 \) and the ML decoder will make an error with probability \(1 - \frac{1}{|C(e)|} \).

Obviously, \(\delta \leq B \). If \(\delta = B \) we say that \(C \) has full diversity. The definition of \(\delta \) shows that it corresponds to the minimum distance of a code of length \(B \) constructed over an alphabet of size \(M^B \). Therefore by using the Singleton bound we get [2]

\[\delta \leq \delta_B \]

(8)

where

\[\delta_B = 1 + \left[B \left(1 - \frac{R}{\log_2 M} \right) \right]. \]

(9)

The Singleton bound states that given \(B, R \) and \(M \), the block diversity cannot be larger than (9), and thus full diversity is only guaranteed if \(\frac{R}{\log_2 M} \leq \frac{1}{B} \).

Definition 2: A code \(C \) is diversitywise maximum-distance separable (MDS) if it meets the Singleton bound with equality, i.e., \(\delta = \delta_B \).

In the following we elaborate on the optimality of MDS codes over the block-erasure channel.

A. Outage Probability

Similarly to other non-ergodic channels, the block-erasure channel has zero capacity in the strict Shannon sense, since, in this case, with probability \(\varepsilon^B \) all channels are erased and reliable communication is not possible. We write the mutual information between the input and output of the channel for a given erasure pattern \(e \) as

\[I(e) = \frac{1}{B} \sum_{b=1}^{B} e_b \log_2 M \]

(10)

where \(e_b \) denotes the binary complement of \(e_b \). This comes from the fact that the block-erasure channel is nothing but a set of \(B \) parallel channels (used an equal fraction of the time), each conveying either \(\log_2 M \) bits per channel use if \(e_b = 0 \) or \(0 \) if \(e_b = 1 \). That is, since \(B \) is finite, \(I(e) \) is a random variable. If \(B \to \infty \) the channel the distribution of \(I(e) \) becomes a step function at the value \(c \) corresponding to the channel capacity, and the channel becomes an ergodic \(M \)-ary erasure channel.

We define the information outage probability as the probability that the transmission rate \(R \) is not supported by a given channel realization,

\[P_{\text{out}}(e) \triangleq \Pr \{ I(e) < R \} \]

(11)

In such non-ergodic channels, \(P_{\text{out}}(e) \) is then the best possible word error probability.

We have the following result

Proposition 1: Consider the transmission \(M \)-ary codes over the block-erasure channel. Then,

\[\lim_{e \to 0} P_{\text{out}}(e) = \left(\frac{B}{\log_2 M} \right)^{1} (1 - \varepsilon)^B \]

(12)

Proof: We can write the outage probability as

\[P_{\text{out}}(e) = \Pr \{ I(e) < R \} = \Pr \left\{ \frac{1}{B} \sum_{b=1}^{B} e_b \log_2 M < R \right\} \]

\[= \Pr \left\{ \sum_{b=1}^{B} e_b \log_2 M > BR \right\} \]

\[= \Pr \left\{ A \leq \left[\frac{BR}{\log_2 M} \right] - 1 \right\} \]

\[= \sum_{k=0}^{A} \left(\frac{B}{\log_2 M} \right)^{1} (1 - \varepsilon)^B \]

(13)

where \(A \triangleq \sum_{b=1}^{B} e_b \) is a binomial random variable with success probability \(1 - \varepsilon \). We have quite trivially expressed the outage probability as the c.d.f. of a binomial random variable. Therefore we clearly get that

\[\lim_{e \to 0} P_{\text{out}}(e) = \left(\frac{BR}{\log_2 M} \right)^{1} (1 - \varepsilon)^B \]

(14)

\[\geq \left(\frac{BR}{\log_2 M} \right)^{1} (1 - \varepsilon - \frac{1}{BRL}) \]

where \(L = \max(0, e) \).
which shows the result.

Remark 1. The outage probability has slope δ_B for low ε in a log-log scale, and asymptotic coding gain
\[
\left(\frac{B}{\log_2 M} \right) - 1
\]
Thus it clearly corresponds to the high SNR regime of a block-fading channel [3].

Remark 2. If $\frac{B}{\log_2 M} = \frac{1}{\delta}$ (full diversity), $P_{out}(\varepsilon) = \varepsilon^a$, i.e., the probability that the rate R is not supported by the channel is equal to the probability of having all the blocks erased.

Figure 2 shows the outage probability and the asymptotic limit (12) for $R = \frac{1}{2}$ binary codes ($M = 2$) over a block erasure channel with $B = 2, 4$ and 8 blocks.

![Figure 2: Outage probability](image)

B. Word Errors

The previous result proves the optimality (in diversity only) of designing MDS codes for such channels. In order to achieve the optimal performance, we start from

\[
P_e^w(\varepsilon | c) = 1 - \frac{1}{|C(c)|}
\]

(15)

For any code (with a given block diversity $\delta \leq \delta_B$), since $|C(c)| \leq |C|$ we can trivially upperbound (15) (large block length) as

\[
P_e^w(\varepsilon | c) \leq \begin{cases}
1 & \text{if } \sum_{b=1}^{B} e_b \geq \delta \\
0 & \text{if } \sum_{b=1}^{B} e_b < \delta
\end{cases}
\]

(16)

which leads to

\[
P_e^w(\varepsilon) \leq \Pr \left\{ \sum_{b=1}^{B} e_b \geq \delta \right\} = \Pr \left\{ \sum_{b=1}^{B} e_b \leq B - \delta \right\} = \sum_{k=0}^{B-\delta} \left(\frac{B}{k} \right) (1-\varepsilon)^k \varepsilon^{B-k}.
\]

(17)

In general (17) is not necessarily tight. However (and possibly surprisingly), if C is MDS, i.e., $\delta = \delta_B$, the bound is tight since (17) coincides with $P_{out}(\varepsilon)$. In other words, if C is MDS, its word error probability is given by the outage probability, since the decoder will decode correctly under all erase patterns such that $\sum_{b=1}^{B} e_b < \delta_B$.

Figure 3 confirms the above discussion. We have plotted the outage probability and the limiting behavior (12), as well as the word error rate (WER) simulations for the $(23,39)$ and $(133,171)$ convolutional codes with $L = 25$ (circles/crosses) and $L = 2000$ (diamonds/squares) respectively. As we observe, the simulated WER of the different codes for the different block lengths is the same and matches perfectly with the outage probability.

![Figure 3: Outage probability](image)

Remark 3. This result can be a priori surprising, since it characterizes the performance of any MDS code of any (sufficiently large) block length over the block erasure channel. A posteriori, the result seems rather obvious, since it clearly follows as an artifact from the channel model and the definition of MDS codes. We should not then be misled by this, since in realistic non-ergodic block-fading noisy channels MDS codes are necessary, but not sufficient to approach the outage probability [3]. For example, the WER of convolutional codes in the block-fading channel increases with the block length, while the WER of concatenated MDS codes (as the blockwise concatenated codes of [3] or the parallel turbo-codes of [6]) is given by the distribution of the decoding threshold [7].

C. Bit Errors

In this section we show that diversitywise MDS codes are also optimal for the bit error probability. We start with a very simple upperbound

\[
P_e^b(\varepsilon | c) \leq \begin{cases}
\frac{1}{2} & \text{if } \sum_{b=1}^{B} e_b \geq \delta \\
0 & \text{if } \sum_{b=1}^{B} e_b < \delta
\end{cases}
\]

(18)

which yields

\[
P_e(\varepsilon) = E[P_e^b(\varepsilon | c)] \leq \frac{1}{2} \Pr \left\{ \sum_{b=1}^{B} e_b \geq \delta \right\} = \frac{1}{2} P_e^w(\varepsilon).
\]

(19)

1-4244-0214-0/06/$20.00 ©2006 IEEE

7th Australian Communications Theory Workshop
By using the bit-error version of Fano's inequality with [8, Th. 4.3.2] (using the fact that the encoder's inputs are bits) we can lowerbound the bit-error probability and get that:

\[P_{\varepsilon}^B (\epsilon | e) \geq \frac{1}{h(p) - H(e) + \log_2 M} \]

where \(h(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p} \) is the binary entropy function and \(p = h^{-1}(x) \) denotes the probability \(p \) for which \(h(p) = x \). Therefore, we get that

\[P_{\varepsilon}^B (\epsilon | e) \leq \frac{1}{h^{-1} \left(1 - \frac{H(e)}{R} \log_2 M \right)} \]

which yields to

\[P_{\varepsilon}^B (\epsilon | e) \leq \frac{1}{h^{-1} \left(1 - \frac{\log_2 M}{B R} \right)} \]

\[\leq \frac{B R}{\log_2 M} \sum_{b=1}^{B - \sum_{b=1}^{B} \varepsilon_b} \left(B \right)_{k} \left(1 - \varepsilon \right)^k \varepsilon_{B-k} \]

(25)

since the best the decoder can do in case of an outage event is to guess a fraction \(\frac{B - \sum_{b=1}^{B} \varepsilon_b}{B} \) of the bits and correct the others. Depending on the structure of the code, the decoder will do worse than that. For example, in the ML decoder of a convolutional code will choose a wrong path through the trellis, which will yield more errors in the bits corresponding to the non-erased blocks.

Remark 4: The maximum exponent of \(\varepsilon \) in the BER expression for the (23,33)\(_8\) code with periodic interleaving in [1, pp. 1470]

\[P_{\varepsilon}^B (\epsilon | e) \leq 23.5 \varepsilon^8 (1-\varepsilon)^5 + 13.5 \varepsilon^8 (1-\varepsilon)^2 + 4 \varepsilon^7 (1-\varepsilon) + 0.5 \varepsilon^8 \]

(26)

should not come as a surprise, since the code with periodic interleaving is MDS, and thus \(\varepsilon = 5 \) (the results in [1] are plotted in a linear scale for \(\varepsilon \) and the effect of the slope is not evident). It should also be clear that a random interleaver yields a non-MDS convolutional code, and hence its error probability has a worse slope.

Remark 5: The upperbound (19) and the lowerbounds (21) and (25) coincide for full diversity codes.

Figure 4 shows several bounds and simulations of the bit-error probability. As we see, the difference between the two lowerbounds is quite remarkable, which indicates that (21) might not be achievable in general.

IV. STANDARD LDPC CODES

In this section we consider low-density parity-check (LDPC) codes over such block erasure channel. Any instance of a randomly constructed LDPC code with degree distributions \(\lambda_j, \rho_j \) assigns a fraction \(\lambda_j \) of edges and \(\rho_j \) of edges to variable nodes of degree \(j \). Since there is no further structure in the graph, transmitting LDPC codewords over the block erasure channel is equivalent to the random interleaver of [1]. Thus, given an erasure pattern \(e \), for every variable node a component of \(e \) is selected at random with uniform probability. If it is one, the corresponding variable node is erased. Therefore, we can express the bit error probability for a given erasure pattern \(e \) as

\[P_{\varepsilon}^B (\epsilon | e) \leq P_{\varepsilon}^{BEC} \left(\sum_{b=1}^{B} \varepsilon_b / B \right) \]

(27)

where \(P_{\varepsilon}^{BEC} (\epsilon) \) is the bit error probability in the ergodic binary erasure channel with erasure probability \(\epsilon \) usually denoted by BEC(\(\epsilon \)). For standard LDPC2,

\[P_{\varepsilon}^{BEC} (\epsilon) = \left\{ \begin{array}{ll} \frac{1}{2} & \text{if } \epsilon > \epsilon^* \\
0 & \text{if } \epsilon \leq \epsilon^* \\
\end{array} \right. \]

(26)

Depending on the degree distribution, some LDPC codes might show an error probability characteristic with multiple steps. Here we ignore such cases and consider only the largest erasure probability such that the iterative decoder yields an error probability that goes strictly to zero.
where ϵ^* is the decoding threshold of the code [10]. Therefore, the overall bit error probability is given by

$$P^b_b(\epsilon) = \mathbb{E}[P^b_b(\epsilon|x)]$$

$$= \Pr\left\{ \frac{1}{B} \sum_{b=1}^{B} e_b > \epsilon^* \right\}$$

$$= \Pr\left\{ \sum_{b=1}^{B} e_b < B(1 - \epsilon^*) \right\}$$

$$= \sum_{k=0}^{B} \frac{1}{2^k} \binom{B}{k} (1 - \epsilon)^k \epsilon^{B-k}$$

$$= \sum_{k=0}^{B} \frac{1}{2^k} \binom{B}{k} (1 - \epsilon)^k \epsilon^{B-k}$$

(29)

where $C_{BEC}^b \triangleq 1 - \epsilon^*$ is the capacity of an LDPC code ensemble over the BEC channel. As we see from (29), as $\epsilon \to 0$, the exponent of the dominant term is

$$B - [B C_{BEC}^b] = 1$$

(30)

which is only equal to the Singleton bound when the LDPC code ensemble is the capacity achieving, namely, when $C_{BEC}^b = C_{BEC}$, where C_{BEC} is the Shannon capacity of the BEC. From here we see that standard LDPC codes are not MDS in the block erasure channel. This is confirmed in the next few examples, where we show the performance of regular and irregular LDPC codes of $R = 1/2$. More precisely, we consider the regular (3,6) random ensemble and the irregular code with optimal erasure threshold in the ergodic binary erasure channel [11] whose edge degree distributions are

$$\lambda(x) = 0.224571x + 0.119576x^2 + 0.120921x^4 + 0.0890026x^6 + 0.0895504x^9 + 0.0581616x^{11}$$

$$+ 0.0963533x^{27} + 0.0578119x^{52} + 0.193471x^{90}$$

and

$$\rho(x) = 0.15x^3 + 0.85x^9.$$

Figures 5 and 6 show that neither of the codes is MDS, as they cannot recover from a number of erasures equal to $(\delta_B - 1) L$, which for $R = \frac{1}{2}$ is half the code length. Note that an LDPC code ensemble that can recover from half a codeword erased would be strictly capacity achieving. Similar comments apply to Figures 7, 8, 9 and 10, where the LDPC code ensembles are shown to have error floors. These effects are due to the stopping sets and their associated probabilities. In fact, for small ϵ, all codes tend to have slope 1, regardless of the block length or degree distribution. This shows that classical random LDPC code ensembles with iterative decoding are not suited for erasure channels where erasures appear in a non-ergodic fashion.

Under ML decoding, however, this situation is different. Recall iterative decoding solves a system of equations by back-substitution of degree one equations, and whenever the remaining set of equations has two or more variables in each equation, the decoder stops [10]. Under ML decoding, the decoder will successfully decode if the number of independent parity-check equations is equal to the number of remaining variables. This implies that some LDPC codes can be MDS.

A rather simple analysis reveals the usefulness of diverselywise MDS codes for the non-ergodic block erasure channel. We show that these codes are optimal in this channel and we derive the expressions of their frame error rate as well as tight bounds on their bit-error rate. We also study the performance of random LDPC code ensembles and show that, only strictly capacity achieving ensembles are MDS in the limit for large block length.

V. CONCLUSIONS

For example, an LDPC code whose check nodes are connected to all blocks, will be MDS under ML decoding, provided that the interleaving permutation yields a full rank system for every combination of $\delta_B - 1$ erased blocks.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on October 7, 2009 at 05:32 from IEEE Xplore. Restrictions apply.
ACKNOWLEDGMENT

The authors are grateful to Joseph Boutros for his interest and comments on an earlier version of the paper.

REFERENCES