Location-Based Resource Allocation for OFDMA Cognitive Radio Systems

Mahdi Ben Ghorbel (KAUST, Saudi Arabia)
Mohamed-Slim Alouini (KAUST, Saudi Arabia)
Haewoon Nam (Motorola Inc, USA)

March 15, 2011
Introduction

Resource Allocation

Performance Analysis

Practical Scenarios
3 models for cognitive radios:

- **Interweave**: use primary channels only of non used.
- **Underlay**: use all primary channels under interference condition.
- **Overlay**: interference cancellation via collaboration between PU and SU.

⇒ **Mixed strategy**:

- if channel non used by PU: SU transmit without limit.
- if channel used by PU: SU transmit under interference constraint.
Utility of Location Information

- Cognitive radio need an accurate estimation of the channel to the primary users.
- In literature, usually we assume the knowledge of Channel State Information (CSI) between Secondary and Primary users. ⇒ Impractical hypothesis in cognitive radio systems
- Without CSI, Location information can be used to estimate the interference.
Interference estimation from LI

- Pathloss and shadowing model
 \[
P_{rx}(d) = \frac{P_{tx} \xi 10^{0.1X}}{d^\eta},
\]

- Probabilistic interference constraint
 \[
 \Pr\left[10 \log P_{rx}(d) > 10 \log l_{th}\right] \leq p_\epsilon,
 \]

- Constraint on the transmitted power
 \[
 \frac{P_{tx} \xi}{d^\eta} \leq \frac{l_{th}}{10Q^{-1}(p_\epsilon \sigma_x)}.
 \]
System model

- OFDMA-based Cognitive Radio System
- L subcarriers shared between primary and secondary networks
- Cellular environment (base station + users) ⇒ 2 different scenarios: Downlink and Uplink
- Single secondary network (1 base station + K users)
- Multiple primary networks (N base stations + N users)
- The primary users subchannel occupancy is known by spectrum sensing
- Location information is known to the cognitive radio networks
 - by cooperative measurements,
 - by geo-location database.
Problem formulation

\[
\max \sum_{k=1}^{K} \sum_{i=1}^{L} a_{k,i} \log_2 \left(1 + \frac{|h_{k,i}|^2 p_{k,i}}{N_0} \right)
\]

subject to

\[
\sum_{k=1}^{K} a_{k,i} = 1, \quad \forall i,
\]

\[
\sum_{k=1}^{K} \sum_{i=1}^{L} a_{k,i} p_{k,i} \leq P_{\text{tot}},
\]

\[
\sum_{k=1}^{K} a_{k,i} b_{n,i} \frac{p_{k,i} \xi}{d_{0,n}^m} \leq \frac{I_{\text{thresh}}}{10 Q^{-1}(\rho \sigma_x)}, \quad \forall i, \forall n,
\]
Lagrange Technique

▶ KKT conditions

\[
\begin{align*}
\frac{a_{k,i}\|h_{k,i}\|^2}{N_0 + |h_{k,i}|^2 p_{k,i}} - a_{k,i} b_i \frac{\lambda_i \xi}{d_0} - a_{k,i} \rho_0 &= 0, \\
\lambda_{i,n} \left(\frac{I_{n,i}^{\text{thresh}}}{10^{Q-1}(\rho \sigma_x)} - \sum_{k=1}^{K} a_{k,i} b_i \frac{p_{k,i} \xi}{d_0^\eta} \right) &= 0, \\
\rho_0 \left(P_{tot} - \sum_{k=1}^{K} \sum_{i=1}^{L} a_{k,i} p_{k,i} \right) &= 0.
\end{align*}
\]

▶ Optimal power allocation (knowing the subchannel allocation)

\[
p_{k,i} = \begin{cases}
\left(\frac{1}{\rho_0} - \frac{N_0}{|h_{k,i}|^2} \right)^+, & \text{if } i \text{ non used by any PU}, \\
\min \left\{ \left(\frac{1}{\rho_0} - \frac{N_0}{|h_{k,i}|^2} \right)^+, \frac{I_{n,i}^{\text{thresh}} d_{0,n_i}^\eta}{10^{Q-1}(\rho \sigma_x) \xi} \right\}, & \text{if } i \text{ used by at least one PU},
\end{cases}
\]

where \(\frac{1}{\rho_0} \) is the water level:

\[
\frac{1}{\rho_0} = \frac{1}{|U|} \left(P_{tot} - \sum_{i \in S} \frac{I_{n,i}^{\text{thresh}} d_{0,n_i}^\eta}{10^{Q-1}(\rho \sigma_x) \xi} + \sum_{i \in U} \frac{N_0}{|h_{k,i}|^2} \right)
\]

\(k_i \) is the secondary user allocated to use the subchannel \(i \).

\(n_i \) is the most primary user affected by the power transmitted by the base station on the subchannel \(i \).
Optimal subchannel and power allocation

1. Select the most sensitive primary user per subchannel

\[n_i = \arg \min_{n/b_{n,i}=1} \left\{ \frac{d_{0,n_i} \tilde{T}_{n,i}^{\text{thresh}}}{\xi} \right\}, \quad i = 1, \cdots, L \]

2. Select the allocated secondary user per subchannel

\[k_i = \arg \max_k \frac{|h_{k,i}|^2}{N_o}, \]

3. Run the conventional Cap-limited waterfilling algorithm which solves the simplified problem:

\[
\max \sum_{i=1}^{L} a_{k_i,i} \log_2 \left(1 + \frac{|h_{k_i,i}|^2 p_{k_i,i}}{N_o} \right)
\]

subject to

\[
\sum_{i=1}^{L} p_{k_i,i} \leq P_{\text{tot}},
\]

\[
p_{k_i,i} \leq \frac{\tilde{T}_{n,i}^{\text{thresh}} d_{0,n_i}^{\eta}}{10^{Q-1}(p^\epsilon \sigma_x) \xi}, \quad \forall i,
\]
Uplink

Problem statement

\[
\max \sum_{k=1}^{K} \sum_{i=1}^{L} a_{k,i} \log_2 \left(1 + \frac{|h_{k,i}|^2 p_{k,i}}{N_o} \right)
\]

subject to

\[
\sum_{k=1}^{K} a_{k,i} = 1, \forall i,
\]

\[
\sum_{i=1}^{L} a_{k,i} p_{k,i} \leq P_k, \quad \forall k,
\]

\[
\sum_{k=1}^{K} a_{k,i} b_{n,i} \frac{p_{k,i} \xi}{d_{k,n}^\eta} \leq \frac{I_{n,i}^{\text{thresh}}}{10Q^{-1}(p_e \sigma_x)}, \forall i, \forall n,
\]
Lagrange Technique

- **KKT conditions**

\[
\begin{align*}
\frac{a_{k,i}|h_{k,i}|^2}{N_o + |h_{k,i}|^2 p_{k,i}} - a_{k,i} b_{n,i} \frac{\lambda_{i,n} \xi}{d_{k,n}^\eta} - a_{k,i} \rho_k &= 0, \\
\lambda_{i,n} \left(\frac{I_{\text{thresh}}^{n_i}}{10^{Q-1}(p_{\epsilon} \sigma_x)} - \sum_{k=1}^{K} a_{k,i} b_{i,n} \frac{p_{k,i} \xi}{d_{k,n}^\eta} \right) &= 0, \\
\sum_{k=1}^{K} \rho_k \left(P_k - \sum_{i=1}^{L} a_{k,i} p_{k,i} \right) &= 0.
\end{align*}
\]

- **Optimal power allocation** (knowing the subchannel allocation)

\[
p_{k,i} = \begin{cases}
\left[\frac{1}{\rho_{k,i}} - \frac{N_o}{|h_{k,i}|^2} \right]^+, & i \in U_c, \\
\min \left\{ \left[\frac{1}{\rho_{k,i}} - \frac{N_o}{|h_{k,i}|^2} \right]^+, \frac{I_{\text{thresh}}^{n_{k_i,i}} d_{k_i,n_{k_i,i}}^\eta}{10^{Q-1}(p_{\epsilon} \sigma_x) \xi} \right\}, & i \in U_p,
\end{cases}
\]

where \(\frac{1}{\rho_k} \) the water level for user \(k \) determined by:

\[
\frac{1}{\rho_k} = \frac{1}{|U_k|} \left(P_k - \sum_{i \in S_k} \frac{I_{\text{thresh}}^{n_{k_i,i}} d_{k_i,n_{k_i,i}}^\eta}{10^{Q-1}(p_{\epsilon} \sigma_x) \xi} + \sum_{i \in U_k} \frac{N_o}{|h_{k,i}|^2} \right)
\]

\(k_i \) is the secondary user allocated to the subchannel \(i \)

\(n_{k_i,i} \) is the most affected primary base station by the power emitted from the secondary user \(k_i \) on the subchannel...
Proposed Algorithm

- Select most sensitive primary user per subchannel and per secondary user

\[n_{k,i} = \underset{n/b_{n,i}=1}{\text{arg min}} \left\{ \frac{d_{k,n}^n \tilde{I}_{n,i}^{\text{thresh}}}{\xi} \right\}, \quad \begin{cases} k = 1, \ldots, K. \\ i = 1, \ldots, L. \end{cases} \]

- Impossible consecutive subchannel and power allocation (unlike downlink)

- Perform low cost algorithm to allocate subchannels and power simultaneously
 1. Run the cap-limited waterfilling algorithm over the available subchannels for each user independently.
 2. Compute the capacity for each subchannel
 3. Select the pair \(\{k_i^*, i^*\} \) with the highest capacity,
 4. Allocate the \(i^* \)th subchannel to the user \(k_i^* \)
 5. Update the list of unavailable subchannels
 6. Repeat the above procedure until all the subchannels allocated.
Simulations set up

- Number of subcarriers: $L = 64$
- Number of secondary users: $K = 20$
- Number of primary users: $N = 10$
- Pathloss exponent: $\eta = 3$
- Interference threshold: $I_{th} \in [-130\,dBm, -110\,dBm]$
- Shadowing effect variance:
- Base station power budget: $P_{tot} = 20\,dBm$
- Secondary user power budget: $P_k = 3\,dBm$
- $p_\epsilon = 0.4\%$, $\sigma_x = 5$
Location Information Effect

Figure: Effect of the use of location information instead of channel state information on the capacity of cognitive network.
Proposed Algorithm compared to Exhaustive Search

Figure: Comparison between the total capacity obtained using the proposed algorithm and the exhaustive search algorithm (8 subch, 4 SU, 2 PU).
Impact of the location of the users on the capacity

1. **Scenario 1**: All the SU are located along the circle with a radius of 1 (km) and the PU is located within the cell with the radius of 8 (km).

2. **Scenario 2**: The secondary users as well as the primary user are randomly distributed within the cell. (more practical scenario)

Figure: Comparison between the performance of two users distribution scenarios for the downlink case.
Threshold interference impact

Figure: Downlink capacity of various schemes as a function of p_{ϵ}
Presence of inter-carrier interference (ICI)

ICI coefficient between subchannels: \(g_{i,j} = \begin{cases} \frac{\alpha}{(i-j)^2}, & \text{if } i \neq j, \\ 1, & \text{if } i = j, \end{cases} \)

Downlink

\[
\sum_{k=1}^{K} \frac{b_i}{d_0^n} \sum_{j=1}^{L} g_{i,j} a_{k,j} p_{k,j} \leq \frac{l_{th}}{10^{Q-1}(p_e \sigma_X)}, \quad \forall i
\]

\[
\sum_{i=1}^{K} \frac{b_i}{d_k^n} \sum_{j=1}^{L} g_{i,j} a_{k,j} p_{k,j} \leq \frac{l_{th}}{10^{Q-1}(p_e \sigma_X)}, \quad \forall i
\]

Uplink

\[
\sum_{k=1}^{K} \frac{b_i}{d_0^n} \sum_{j=1}^{L} g_{i,j} a_{k,j} p_{k,j} \leq \frac{l_{th}}{10^{Q-1}(p_e \sigma_X)}, \quad \forall i
\]

\[
\sum_{i=1}^{K} \frac{b_i}{d_k^n} \sum_{j=1}^{L} g_{i,j} a_{k,j} p_{k,j} \leq \frac{l_{th}}{10^{Q-1}(p_e \sigma_X)}, \quad \forall i
\]

\[
p_{k_i,i} = \left[\frac{d_0^n}{\xi \sum_{j \in U_p} g_{j,i} \lambda_j + \rho_0 d_0^n} - \frac{N_0}{|h_{k,i}|^2} \right]^+, \quad \forall i
\]

\[
p_{k_i,i} = \left[\frac{d_k^n}{\xi \sum_{j \in U_p} g_{j,i} \lambda_j + \rho_k d_k^n} - \frac{N_0}{|h_{k,i}|^2} \right]^+, \quad \forall i
\]
Impact of inter-carrier interference between subchannels

Figure: Impact of correlation between subchannels on the capacity.
Discrete rate resource allocation

- Adjust power allocated to nearest inferior discrete load
 \[p'_{ki,i} = \frac{N_0}{|h_{ki,i}|^2} (2^{r_{ki,i}} - 1), \text{ with } r_{ki,i} = \lceil \log_2(1 + \frac{|h_{ki,i}|^2 p_{ki,i}}{N_0}) \rceil \]

- Compute remaining power after readjustment: \(P^- = P_{\text{tot}} - \sum_{i=1}^{L} p'_{ki,i} \)

- Redistribute remaining power using greedy algorithm

1. start from the subchannel with minimal additional power needed to increment bit load
 \[n_{\text{min}} = \arg \max_{i \in S} |h_{ki,i}|, \text{ where } S = \{i \in \arg \min \{r_{ki,i}\} \} \]

2. compute the power needed to increment its power to next bit
 \[p^+_{i} = \frac{N_0}{|h_{ki,i}|^2} 2^{r_{ki,i}} \]

3. verify power budget and interference constraints
 \[i \in U_c \text{ or } (i \in U_p \text{ and } p_{ki,i} + p^+_{i} \leq \frac{I_{\text{thresh}}}{d_{ni,i}^{\eta}} \xi) \]
 \[p_{ki,i} \leq P^- \]

4. update remaining power and search next subchannel
 \[P^- = P^- - p_{ki,i} \]
Discretization effect on the performances in Downlink

Figure: Effect of discrete rate allocation on the performance of the cognitive network for downlink.
Collocated subchannels allocation

1. Construct a capacity matrix \(C = \{c_{k,i}\}^{K \times L} \), and a validity indication matrix \(V = \{v_{k,i}\}^{K \times L} \) and initialize it as valid.
2. Run an individual cap-limited waterfilling for each user.
3. Compute the elements of \(C \) using \(c_{k,i} = \log_2(1 + \frac{|h_{k,i}|^2 p_{k,i}}{N_0}) \).
4. Find the element with the highest capacity among the valid elements:
 \[\{k^*, i^*\} = \arg \max_{k,i} v_{k,i} c_{k,i} \]
5. Check if the user \(k^* \) already has other allocated subchannel(s). If so, go to 6, otherwise, proceed to 7.
6. Check if the subchannel \(i^* \) is adjacent to the already allocated subchannels for the user \(k^* \).
 - If so, proceed to 7,
 - Otherwise, the subchannel \(i^* \) can not be allocated to the user \(k^* \): So mark it \(i^* \) as invalid and go back to 4.
7. Allocate the subchannel \(i^* \) to the user \(k^* \) and mark it as invalid for all other users.
8. Check the surrounding (left and right) elements, if they are invalid change them as valid.
9. Go back to 2 and repeat until all the subchannels are allocated.
Comparison between different scenarios

<table>
<thead>
<tr>
<th>subchannel</th>
<th>power</th>
<th>rate</th>
<th>Up / Downlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no restriction</td>
<td>waterfilling</td>
<td>fractional</td>
</tr>
<tr>
<td>2</td>
<td>no restriction</td>
<td>waterfilling</td>
<td>discrete</td>
</tr>
<tr>
<td>3</td>
<td>no restriction</td>
<td>fixed power</td>
<td>fractional</td>
</tr>
<tr>
<td>4</td>
<td>collocated</td>
<td>waterfilling</td>
<td>fractional</td>
</tr>
<tr>
<td>5</td>
<td>collocated</td>
<td>waterfilling</td>
<td>discrete</td>
</tr>
</tbody>
</table>
Figure: Effect of discrete rate and allocation of collocated subchannels on the performance of the cognitive network.
Conclusion

▶ The use of Location Information is more practical for resource allocation in Cognitive Radios than the Channel State Information.

▶ The proposed algorithms are low-cost and optimal for downlink and suboptimal for uplink.

▶ The proposed model is valid for multiple primary user networks with different thresholds of interference per subchannel.

▶ The suggested scenarios allow easier implementations:
 ▶ Integer bit loading
 ▶ Collocated subchannel allocation

Future work

▶ Multiple secondary networks

▶ Pricing: introduce prices of sharing subchannels.
Thank you for your attention
Questions ??
Location-Based Resource Allocation for OFDMA Cognitive Radio Systems

Mahdi Ben Ghorbel (KAUST, Saudi Arabia)
Mohamed-Slim Alouini (KAUST, Saudi Arabia)
Haewoon Nam (Motorola Inc, USA)

March 15, 2011